Companion Diagnostic (CDx) Associated Findings

<table>
<thead>
<tr>
<th>GENOMIC FINDINGS DETECTED</th>
<th>FDA-APPROVED THERAPEUTIC OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR L858R</td>
<td>IRESSA® (gefitinib)</td>
</tr>
<tr>
<td></td>
<td>TAGRISSO® (osimertinib)</td>
</tr>
<tr>
<td></td>
<td>TARCEVA® (erlotinib)</td>
</tr>
</tbody>
</table>

Other Short Variants Identified

Results reported in this section are not prescriptive or conclusive for labeled use of any specific therapeutic product. See professional services section for information on the alterations listed in this section as well as any additional detected copy number alterations, gene rearrangements, or biomarkers.

OTHER BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

- **DNMT3A** R736H
- **PIK3CA** H1047Q

Refer to appendix for limitation statement relating to detection of alterations in ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1.

Please refer to appendix for Explanation of Clinical Significance Classification and for variants of unknown significance (VUS).
Interpretive content on this page and subsequent pages is provided as a professional service, and is not reviewed or approved by the FDA.

PATIENT

DISEASE Lung non-small cell lung carcinoma (NOS)
NAME
DATE OF BIRTH
SEX
MEDICAL RECORD #

PHYSICIAN

ORDERING PHYSICIAN
MEDICAL FACILITY
ADDITIONAL RECIPIENT
MEDICAL FACILITY ID
PATHOLOGIST

SPECIMEN

SPECIMEN ID
SPECIMEN TYPE
DATE OF COLLECTION
SPECIMEN RECEIVED

BIOMARKER FINDINGS

Blood Tumor Mutational Burden - 8 Muts/Mb

Microsatellite status - Cannot Be Determined

Tumor Fraction - 15%

GENOMIC FINDINGS

<table>
<thead>
<tr>
<th>Gene</th>
<th>VAF %</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>amplification - L858R</td>
</tr>
</tbody>
</table>

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

Unable to determine Microsatellite status due to insufficient evidence of genomic instability.

Tumor fraction is an estimate of the percentage of circulating-tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample based on observed aneuploid instability.

Therapies with Clinical Benefit (IN PATIENT’S TUMOR TYPE)

- Afatinib
- Dacomitinib
- Erlotinib
- Gefitinib
- Osimertinib

Therapies with Clinical Benefit (IN OTHER TUMOR TYPE)

- Cetuximab
- Panitumumab

The content provided as a professional service by Foundation Medicine, Inc. has not been reviewed or approved by the FDA.

Electronically signed by Daniel Duncan, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531
Shakti Ramkisson, M.D., Ph.D., MM. Sc, Laboratory Director CLIA: 34D2044309
Foundation Medicine, Inc. | 1.888.988.3639

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 - CLIA: 22D2027531
Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 - CLIA: 22D2027531
Post-Sequencing Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 - CLIA: 22D2027531
Genomic Findings

PIK3CA - H1047Q

- **VAF %**: 2.7%

<table>
<thead>
<tr>
<th>Therapies with Clinical Benefit (in Patient’s Tumor Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

10 Trials see p. 16

Genomic Findings with No Reportable Therapeutic or Clinical Trials Options

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

DNMT3A - R736H

THERAPIES WITH CLINICAL BENEFIT (IN OTHER TUMOR TYPE)

- Alpelisib
- Everolimus
- Temsirolimus

IMPORTANT NOTE

Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient’s tumor type. Neither the therapeutic agents nor the clinical trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient’s tumor type. In the appropriate clinical context, germline testing of *APC*, *BRCA1*, *BRCA2*, *BRIP1*, *MEN1*, *MLH1*, *MSH2*, *MSH6*, *MUTYH*, *NF2*, *PALB2*, *PEN2*, *PMS2*, *PTEN*, *RAD51C*, *RAD51D*, *RB1*, *RET*, *SDHA*, *SDHB*, *SDHC*, *SDHD*, *SMAD4*, *STK11*, *TGFBR2*, *TP53*, *TSC1*, *TSC2*, *VHL*, and *WT1* is recommended.

Variant Allele Frequency is not applicable for copy number alterations.
HISTORIC PATIENT FINDINGS

<table>
<thead>
<tr>
<th>VAF%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Tumor Mutational Burden</td>
<td></td>
</tr>
<tr>
<td>8 Muts/Mb</td>
<td></td>
</tr>
</tbody>
</table>

Microsatellite status

<table>
<thead>
<tr>
<th>Tumor Fraction</th>
<th>Blood Tumor Mutation (TMB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>8 Muts/Mb</td>
</tr>
</tbody>
</table>

Tumor Fraction

- **EGFR**
 - L858R: amplification, Detected
 - H1047R: Detected
- **PIK3CA**
 - H1047R: Detected
- **DNMT3A**
 - R736H: Detected

Variant Allele Frequency Percentage (VAF%)

- 10% increments
- 0.5% increments

IMPORTANT NOTE: This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx, FoundationOne®Liquid, FoundationOne®, or FoundationOne®CDx tests. Up to five previous tests may be shown. For some genes in FoundationOne Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.

- **Not Tested** = not baited, not reported on test, or test preceded addition of biomarker or gene
- **Not Detected** = baited but not detected on test
- **Detected** = present (VAF% is not applicable)
- **VAF%** = variant allele frequency percentage
- **Cannot Be Determined** = Sample is not of sufficient data quality to confidently determine biomarker status

The content provided as a professional service by Foundation Medicine, Inc. has not been reviewed or approved by the FDA.

Electronically signed by Daniel Duncan, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531
Shakti Ramkisson, M.D., Ph.D., MM. Sc, Laboratory Director CLIA: 34D2044309
Foundation Medicine, Inc. 1.888.988.3639

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 - CLIA: 22D2027531
Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 - CLIA: 22D2027531
Post-Sequencing Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 - CLIA: 22D2027531
Biomarker:

Blood Tumor Mutational Burden

Result:
8 Muts/Mb

Potential Treatment Strategies:

On the basis of clinical evidence in NSCLC, increased bTMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1 and anti-PD-1 therapies. A retrospective analysis of 2 large randomized trials demonstrated patients with NSCLC and a bTMB ≥10 Muts/Mb achieved greater clinical benefit following treatment with atezolizumab than those with bTMB <10 Muts/Mb; similar results have been reported in additional clinical trials using either PD-1 or PD-L1 inhibitors and at higher bTMB cutpoints for patients with NSCLC3-4. In a small study, treatment with PD-1 or PD-L1 inhibitors resulted in improved PFS for patients with NSCLC and bTMB ≥6 Muts/Mb as compared to patients with bTMB <6 Muts/Mb2.

Frequency & Prognosis:

NSCLC harbors a median bTMB of 16.8 Muts/ Mb (range 1.9-52.5 Muts/Mb)3. Published data investigating the prognostic implications of bTMB levels in lung cancer are limited (PubMed, Jul 2020). A large study of Chinese patients with lung adenocarcinoma reported a shorter median OS for tumors with a higher number of mutations in a limited gene set compared with a lower mutation number (48.4 vs. 61.0 months)5. Another study of patients with NSCLC correlated elevated TMB with poorer prognosis and significantly associated lower TMB in combination with PD-L1 negative status with longer median survival in patients with lung adenocarcinoma5. However, no significant prognostic association of TMB and/or PD-L1 status with survival has been reported in patients with lung SCC6-7.

Finding Summary:

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma8-9 and cigarette smoke in lung cancer10-11, treatment with temozolomide-based chemotherapy in glioma12-13, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes14-16, and microsatellite instability (MSI)17-18. This sample harbors a bTMB below levels that would be predicted to be associated with sensitivity to PD-1 or PD-L1 targeting immune checkpoint inhibitors alone or in combination with other agents1-3.

Biomarker:

Tumor Fraction

Result:
15%

Potential Treatment Strategies:

There are currently no targeted approaches to address specific tumor fraction levels; however, on the basis of emerging clinical evidence, changes in tumor fraction may correlate with treatment duration and clinical response and may be a useful indicator for cancer management19-24.

Frequency & Prognosis:

Detectable ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported in patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)25. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer26, Ewing sarcoma and osteosarcoma27, prostate cancer28, breast cancer29, leiomyosarcoma29, esophageal cancer30, colorectal cancer31, and gastrointestinal cancer32.

Finding Summary:

Tumor fraction is an estimate of the percentage of circulating tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. Tumor cells in most advanced solid tumor types may shed ctDNA through the process of apoptosis or necrosis33-34. Tumor fraction has been proposed to be a noninvasive surrogate biomarker of disease burden dynamics. Elevated tumor fraction levels have been associated with inferior prognosis, and therapeutic resistance to treatment in certain tumor types29-31, whereas reduced levels have been correlated with tumor shrinkage and improved clinical outcome in patients with non-small cell lung cancer, uterine cancer, and melanoma treated with immunotherapy30,34,35. The tumor fraction estimate, shown here, is computationally derived from observed aneuploid instability in the sample.
Potential Treatment Strategies

EGFR activating mutations may predict sensitivity to EGFR TKIs, including erlotinib\(^{36}\), gefitinib\(^{37}\), afatinib\(^{38}\), dacomitinib\(^{39}\), and osimertinib\(^{40}\). Third-generation EGFR inhibitors, such as osimertinib, selectively target mutated EGFR, including EGFR T790M\(^{40-41}\). Osimertinib achieved an ORR of 61% in T790M-positive cases and 21% in T790M-negative cases\(^{40}\). Resistance to EGFR inhibition may arise by reactivation of the MAPK pathway, and preclinical evidence suggests that co-targeting EGFR and MAPK signaling may retard the development of acquired resistance to third-generation EGFR inhibitors\(^{42-44}\). EGFR amplification or expression may be associated with benefit from anti-EGFR antibodies, such as cetuximab\(^{45-48}\), panitumumab\(^{49}\), or necitumumab\(^{50}\), or EGFR TKIs that target wild-type EGFR\(^{50-54}\). Necitumumab is an anti-EGFR antibody that is approved to treat metastatic squamous NSCLC in combination with gemcitabine and cisplatin\(^{55,56}\) that has also shown benefit in patients with CRC and melanoma\(^{57,58}\). Irreversible EGFR inhibitors, as well as HSP90 inhibitors, may be appropriate for patients with de novo or acquired resistance to EGFR-targeted therapy\(^{59-62}\). Preclinical studies have reported that EGFR-mutant cells\(^{59-61}\), including cells with exon 20 insertions\(^{63}\), are sensitive to HSP90 inhibitors. For patients with EGFR exon 19 deletion/ L858R-positive and T790M-negative NSCLC who had previously progressed on first or second-generation EGFR TKIs, a Phase 1 study evaluating the HER3-targeted antibody U3-1402 reported tumor reduction in 12 patients with 2 confirmed PRs (2/15\(^{64}\)). Consistent with preclinical data demonstrating that the EGFR inhibitor AZD3759 is capable of penetrating the blood-brain barrier and reducing the volume of brain and leptomeningeval metastases, preliminary results from a Phase 1 trial evaluating a single-agent AZD3759 reported a reduction in the volume of brain metastases in 40.0% (8/20) of patients with previously treated NSCLC harboring either EGFR L858R or EGFR exon 19 deletion, including 3 confirmed PRs and 3 unconfirmed PRs\(^{65-66}\). In a Phase 1/2 trial for advanced NSCLC, the brain-penetrant third-generation EGFR TKI lazertinib enabled ORRs of 54.3% (69/127) for all evaluable patients and 44.4% (8/18, intracranial) for patients with brain metastases\(^{67}\). The reovirus Reolysin targets cells with activated RAS signaling\(^{68-69}\) and is in clinical trials in patients with some tumor types. Reolysin has demonstrated mixed clinical efficacy, with the highest rate of response reported for patients with head and neck cancer\(^{70-71}\). The role of EGFR or KRAS mutations as biomarkers for response to Reolysin in NSCLC is unclear\(^{80}\). For patients with NSCLC treated with EGFR tyrosine kinase inhibitors, PIK3CA mutation is associated with shorter OS in a meta-analysis (pooled HR of 1.83)\(^{81}\). Clinical studies of lung cancer have shown that acquired PIK3CA mutation may confer resistance to EGFR inhibitors like osimertinib\(^{82-83}\). The Phase 3 IMPower study showed that the addition of atezolizumab to bevacizumab plus chemotherapy treatment also had clinical efficacy in patients with untreated EGFR-mutated or ALK-rearranged metastatic NSCLC\(^{84}\); therefore, the patient’s clinical context should be considered.

Frequency & Prognosis

Amplification of EGFR has been variably reported in 4-42% of non-small cell lung carcinoma (NSCLC) samples\(^{85-89}\). EGFR mutation has been reported in 12-36% of lung adenocarcinomas\(^{85-91}\) and in 4% of lung squamous cell carcinomas\(^{85}\). EGFR protein expression/overexpression has been reported in up to 70% of NSCLC cases\(^{85-87,91}\). In addition, expression of EGFR protein has been shown to be higher in lung squamous cell carcinoma samples as compared to lung adenocarcinoma\(^{92-94}\). In lung adenocarcinoma, EGFR gene amplification was a predictor of poor disease-free survival in all patients and of poor overall survival in patients with EGFR mutations\(^{87-88}\). Nuclear expression of EGFR in NSCLC has been reported to associate with higher disease stage, shorter progression-free survival, and shorter overall survival\(^{99}\). However, EGFR mutations have been reported to predict improved survival in patients with resected Stage 1-3 lung adenocarcinoma\(^{100}\) or resected Stage 1 NSCLC\(^{101}\).

Finding Summary

EGFR encodes the epidermal growth factor receptor, which belongs to a class of proteins called receptor tyrosine kinases. In response to signals from the environment, EGFR passes biochemical messages to the cell that stimulate it to grow and divide. Amplification of EGFR has been associated with increased expression of EGFR mRNA and protein in several cancer types\(^{88,103-104}\). EGFR L858 is located in the kinase domain and is encoded by exon 21; mutations at this position are predicted to be activating. Patients with the L858R mutation have been shown to be sensitive to EGFR tyrosine kinase inhibitors, such as erlotinib, gefitinib\(^{105-107}\), and afatinib\(^{108}\). Other mutations at this position are predicted to be activating.