IMMUNEFI AUDIT

&3 Immunefi / CC Protocol

DATE | August 5, 2025

-

ADITOR Neplbx ,“ Security jReseéIche_r:s e b
REPORT BY Tnmunefi .

_ Over1ew :

“ Texminology. o
Executive’ Summary
o4 | Flndlngs -

S

@ Immunefi

ABOUT IMMUNEFI
TERMINOLOGY
EXECUTIVE SUMMARY
FINDINGS
IMM-CRIT-01
IMM-HIGH-01
IMM-HIGH-02
IMM-HIGH-03
IMM-MED-01
IMM-MED-02
IMM-MED-03
IMM-MED-04
IMM-MED-05
IMM-LOW-01
IMM-LOW-02
IMM-LOW-03
IMM-LOW-04
IMM-LOW-05
IMM-LOW-06
IMM-INSIGHT-01
IMM-INSIGHT-02
IMM-INSIGHT-03
IMM-INSIGHT-04
IMM-INSIGHT-05
IMM-INSIGHT-06

Immunefi Audits

Immunefi / CC Protocol

O o 0O 0 b W

13
17
19
21

24

26

28
31

33

36

38

39
41

42

43

45

46
47

@ Immunefi

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than
$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing
over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a
single command center to more than 300 projects — including Sky (formerly MakerDAQO), Optimism,
Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,
AAVE, ZKsync, Morpho, Ethena, USDTO, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,
Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi's market leading products
and community of elite security researchers with a curated set of the very best security products and
technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus
Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi's proprietary vulnerabilities dataset — the largest and most
comprehensive in web3, ensuring that security leaders and teams have the best possible tools for
identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

- Likelihood represents the likelihood of a finding to be triggered or exploited in practice

- Impact specifies the technical and business-related consequences of a finding

- Severity is derived based on the likelihood and the impact
We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

LIKELIHOOD IMPACT

HIGH MEDIUM
CRITICAL
HIGH
MEDIUM Medium Medium
Low Low
NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely checked,
regardless of severity.

4 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

EXECUTIVE SUMMARY

Over the course of 7 days in total, CC Protocol engaged with Immunefi to review the
ccprotocol-contracts-internal repository. In this period of time a total of 21 issues were identified.

SUMMARY
Name CC Protocol
Repository https://github.com/ccprotocol/ccprotocol-contracts-internal
Audit Commit e44a2d34429de9ba8f5fc9a984ee600dada6289b
Type of Project Infrastructure
Audit Timeline July 1st - July 7th
Fix Period July 10th - Aug 4th

ISSUES FOUND

Severity Count Fixed Acknowledged
Critical 1 1 0
High 3 2 1
Medium 5 3 2
Low 6 2 4
Insights 6 6 0
CATEGORY BREAKDOWN
Bug 15
Gas Optimization 1
Informational 5

5 Immunefi Audits Immunefi / CC Protocol

https://github.com/ccprotocol/ccprotocol-contracts-internal
https://github.com/ccprotocol/ccprotocol-contracts-internal

@ Immunefi

FINDINGS

IMM-CRIT-01
withdrawals can be manipulated to leave no funds for campaign
owner #15

Id IMM-CRIT-01

Category Bug

Status Fixed in
e8ccf17c96143d0e8c401d27c8d61175b2782419

Description

The treasury implements a complex withdrawal scheme in its method with
varying post-/pre-deadline withdrawal logic, varying schemes, and Columbian tax accounting. Withdrawals
are open as soon as the platform admin enables them through S SN IRIIEREN, and are available up until
the withdrawal delay after the campaign deadline (enforced through the

RN SRR =V EYDEYEYD] Mmodifier call in the method). Pre-deadline withdrawals require specifying the
amount to withdraw, which will be deducted from the pledged amount storage variable

SEEYERET IR LI ¥lgks. The withdrawal amount is split into fees which go to the platform, protocol fees,
and the value which actually goes to the campaign owner.

An interesting functionality of the method of the treasuries (both and
TG Y) we have noted is the lack of access control enforced: any user or contract on the network
where the contracts are deployed is able to perform the withdrawal. Supposedly, this was planned to be
justified by the withdrawal implementation, which always transfers funds to the campaign owner and
nobody else.

In the case of [NHIOsNOaIEIES We, indeed, do not consider there to be any issue with the method
being callable by anyone. [CHNIETIOI 'S case, however, is more complex, since it performs the fee
accounting logic within JfiaRle. We'd like to point out one specific kind of fees accounted for in

CEEIREM LR eIgElY: flat rate platform fees, specified by the HRISSCFRREIIRECYAAaNd

6 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

SRCECVERG M EYSAIREIAEEGEY platform data values. These fees are

withdrawalAmount without being scaled or transformed in any manner:

TypeScript
function withdraw(
uint256 amount

)
public
currentTimeIsLess(getDeadline() + s_config.withdrawalDelay)
whenNotPaused
whenNotCancelled
withdrawalEnabled
{

// Flat fee calculation
if(currentTime > getDeadline()){
if(withdrawalAmount == 0)({
revert KeepWhatsRaisedAlreadyWithdrawn();
}
if(withdrawalAmount < s_config.minimumWithdrawalForFeeExemption){
s_platformFee += flatFee;
totalFee += flatFee;
}
} else {
withdrawalAmount = amount;
if (withdrawalAmount == 0)({
revert KeepWhatsRaisedInvalidInput();
}
if (withdrawalAmount > s_availablePledgedAmount) {

subtracted from

revert KeepWhatsRaisedWithdrawalOverload(s_availablePledgedAmount,

withdrawalAmount, totalFee);

}

if(withdrawalAmount < s_config.minimumWithdrawalForFeeExemption){
s_platformFee += cumulativeFee;
totalFee += cumulativeFee;
} else {
s_platformFee += flatFee;
totalFee += flatFee;

// Other Fees

7 Immunefi Audits Immunefi / CC Protocol

the

@ Immunefi

// Fees subtracted from withdrawal amount
s_availablePledgedAmount -= withdrawalAmount;
withdrawalAmount -= totalFee;

TOKEN.safeTransfer(recipient, withdrawalAmount);

emit WithdrawalWithFeeSuccessful(recipient, withdrawalAmount, totalFee);

Note how these fees are subtracted during each call, and there is no limit on the minimal
withdrawal amount, meaning that the resulting might even be zero after accounting for
the flat rate fees. By combining this with the lack of access controls on the method, we have
come to the realization that a malicious actor can repeatedly call with tiny values, just
enough to cover the flat fees, which would account all of the pledged funds as platform fees instead of
funds transferred to the owner. By monitoring events, the attacker can perform these withdrawals
immediately (granted that they were enabled by the platform admin using), leaving the
owner without the chance to receive any funds at all.

Furthermore, this issue can be exploited effortlessly in all instances of the treasury, in all
campaigns launched on the CC Protocol using it. Such an attack would completely break the protocol, as
none of the campaign owners would actually be left with any funds after their campaign finishes. Resolving
the issue would require the platforms and the protocol to collaborate and manually recalculate all the
pledges made through in order to correctly distribute them. With all of these points in
mind, we consider the issue to be of critical severity.

Recommendation

Rethink the withdrawal logic, perhaps limiting access to the method to only the owner of the
campaign and the platform admin (for automated withdrawals). Reconsider the fee structure in
treasury to avoid flat fees, if possible, or at least enforce minimal withdrawal amounts, so
that the withdrawal amount is not zero after flat fee deduction.

8 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-HIGH-01

KeepWhatsRaised updateDeadline can block claimRefund by setting past deadline
#5

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in
8ac139306900a9dT6c73b4455b0607415cbed773

Description

The [GEIEDEERIME function in [CEEYLEIRREMS contract contains a vulnerability that allows campaign
owners to instantly block user refunds by setting the campaign deadline to a past timestamp.

The function only validates that the new deadline is greater than the launch time, but does
not require the deadline to be in the future:

TypeScript

function updateDeadline(
uint256 deadline

) external
onlyPlatformAdminOrCampaignOwner

onlyBeforeConfiglLock
whenNotPaused
whenNotCancelled
{
if (deadline <= getLaunchTime()) { // Only checks against launch time
revert KeepWhatsRaisedInvalidInput();
}
// Missing: deadline > block.timestamp check
s_campaignData.deadline = deadline;
}

The function depends on the deadline through Eele = {Vsle [T Tels LRIV :

9 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

TypeScript
function claimRefund(uint256 tokenId) external {
if (!_checkRefundPeriodStatus(false)) {
revert KeepWhatsRaisedNotClaimable(tokenId);

}
// refund logic...

function _checkRefundPeriodStatus(bool checkIfOver) internal view returns (bool) ({
uint256 deadline = getDeadline();
bool isCancelled = s_cancellationTime > 0;

if (!isCancelled) {
// For non-cancelled campaigns: refund possible only AFTER deadline but BEFORE refund
delay expires
return block.timestamp > deadline && !refundPeriodOver;

1. Campaign is running normally with deadline in the future
2. Campaign owner sets deadline to N hour ago
3. If period has already passed since that past time, refunds become impossible forever

Recommendation

Add validation to ensure deadline is always in the future:

TypeScript
if (deadline <= block.timestamp) {
revert KeepWhatsRaisedInvalidInput();

10 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-HIGH-02
Griefing and freezing of funds through unauthorized pledge calls #7

Id IMM-HIGH-02

Severity High

Category Bug
Acknowledged

Status Fix ready but not released in
14dd9e990605d740bb20T13d1468b78Fab020T47

Description

As described in issue 3.2 of the CC Protocol audit by PeckShield, the treasuries' methods
(Y, S NI EER) allow unauthorized pledging on behalf of backers who have
d the protocol token spending by a campaign treasury. From the resolution comment in the report,
we understand that this issue has been acknowledged by the team, and the pledging feature
implementation is intended to be this way. However, PeckShield failed to list the appropriate impacts
caused by this issue, which we feel should make it worthwhile to rework the flow.

Since a malicious user (absolutely any on-chain address) can call pledge on behalf of a backer who has
approved token spending, they can block the backer's legitimate or
calls from succeeding, causing the backer (or the system pledging on behalf of the
backer) to lose funds on gas payments. Token spending approvals are easily trackable thanks to event logs
emitted by pretty much all ERC20 implementations, so an attacker could monitor approvals for the token
used by the protocol to treasury contracts, and instantly execute pledge calls (for example,
R R Eee) with tiny sums, just enough for the call to succeed. Legitimate pledge requests
would fail due to insufficient funds being left in the backer's approval. The backer would have to complete a
refund, and only then retry the pledge. A persistent attacker could use this issue to completely block
pledges to a treasury, sabotaging the campaign it is linked to.

Both [NRROJgVdbNly and [CEVIUFIRLEETe treasuries are affected. The current implementation of
KeepWhatsRaised is affected even more so, as it allows refunds to go through only after cancellation or

after the deadline (see (I IEITIIEFRI=ls Bl ARl | e R N ELMIE). This attack would effectively lock the

backer's funds in the campaign without the ability to choose the rewards they want. We consider this to be
an issue far more severe than was initially described by PeckShield in their report. Since in the

11 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

VLRI REWRTE. treasury this issue can be exploitable to temporarily freeze the funds of the backers due
to the refund mechanism, we are rating the vulnerability severity as High.

Recommendation

If indirect pledging is required, for example gas-free pledge transactions, well-established mechanisms
should be used instead, e.g. EIP-2612 or UniSwap's Permit2. If this behaviour and vulnerability is indeed
intentional and there are some more complex reasons why it can't be fixed, the documentation for all the
methods should mention that they should be called from contracts which execute the and
in a single transaction.

12 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-HIGH-03
Backers can pledge for rewards without actually paying for them #14

Id IMM-HIGH-03

Severity High

Category Bug

Status Fixed in
bf841bdb0fb9113ba8a93d1e88d2f7c4b44eb4b2

Description
Both of the existing treasury protocol implementations, [NEIIg S aETs and ST heI) allow backers to

pledge both for rewards and without them using the [JESJSIXIFNNEIel and [QR lLEIFRANININENEIe methods,

accordingly.

Both [NREIg\eid SN - INLe AT NIENETgel and [Tl EIRE R MRl IR NENEge. function pretty similarly: the

backer specifies the list of rewards they'd like to pledge for, the method aggregates the prices for those
rewards, which are set by the campaign owner through the treasury's method, and passes the
sum as the to the treasury-internal method. transfers the total sum of the
rewards and other pledged funds from the backer.

Example from the [CFUEIREEME treasury:

TypeScript
function pledgeForAReward(
bytes32 pledgeld,
address backer,
uint256 tip,
bytes32[] calldata reward

public

currentTimeIsWithinRange(getLaunchTime(), getDeadline())
whenCampaignNotPaused

whenNotPaused

whenCampaignNotCancelled

whenNotCancelled

13 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

uint256 rewardLen = reward.length;
Reward memory tempReward = s_reward[reward[0]];

uint256 pledgeAmount = tempReward.rewardValue;
for (uint256 i = 1; i < rewardLen; i++) {
if (reward[i] == ZERO_BYTES) {
revert KeepWhatsRaisedInvalidInput();
}
pledgeAmount += s_reward[reward[i]].rewardValue;

}
_pledge(pledgeld, backer, reward[@], pledgeAmount, tip, tokenId, reward);

function _pledge(
bytes32 pledgeld,
address backer,
bytes32 reward,
uint256 pledgeAmount,
uint256 tip,
uint256 tokenId,
bytes32[] memory rewards
) private {
uint256 totalAmount = pledgeAmount + tip;
TOKEN.safeTransferFrom(backer, address(this), totalAmount);

What we have noticed is that neither A110rNothing.pledgeForAReward nor
NI Y validate any elements of the argument to specify actually

available rewards besides the first one, which is checked to have the flag set:

TypeScript
Reward storage tempReward = s_reward[reward[0]];
if (
backer == address(0) ||
rewardLen > s_rewardCounter.current() ||
reward[0] == ZERO_BYTES ||
ItempReward.isRewardTier // <-- the only check related to the reward list parameter

14 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

) A
revert AllOrNothingInvalidInput();

In normal use, this shouldn't be an issue: the owner can add and remove rewards dynamically (using the
and methods), so rewards pledged for aren't supposed to be valid during the
whole duration of the campaign. However, the lack of this validation leads can be exploited by an attacker
to pledge for real rewards before they are registered in the campaign treasury, either by using well-known
reward identifiers (if such can exist), retrieving them from external sources (e.g. the API of the platform
which hosts the campaign), or by front-running all calls made by crowdfunding owners across
the whole CC Protocol. If pledging for rewards which do not yet exist at the moment of the pledge, they will
be contained in the event emitted by the methods of the treasuries, but will not be
accounted for in the pledge, effectively costing zero. The attacker would only have to pay for gas fees and
protocol/platform fees (if any), which in any normal situation should be much less than the rewards
themselves would cost.

Considering that both the [NEIOaOaEaY and treasuries are susceptible to this issue, and its
exploitation does not have any unusual preconditions, we are rating it as being of high severity.

Recommendation

As remediation we recommend adding extra validation steps to both [NRIJgNeidsNeF- S NR=TelsIXIFNNETel and

R Ty which check that the parameter contains rewards actually

registered in the treasury.

Checking the TR E R IER A S I, condition should be valid, since the

methods specifically check that added rewards' values are non-zero:

TypeScript

function addRewards(
bytes32[] calldata rewardNames,
Reward[] calldata rewards

external
onlyCampaignOwner
whenCampaignNotPaused
whenNotPaused

15 Immunefi Audits Immunefi / CC Protocol

@3 Immunefi

whenCampaignNotCancelled

whenNotCancelled
{
if (rewardNames.length != rewards.length) {
revert KeepWhatsRaisedInvalidInput();
}
for (uint256 i = @; i < rewardNames.length; i++) {
bytes32 rewardName = rewardNames[i];
Reward calldata reward = rewards[i];
// Reward name must not be zero bytes and reward value must be non-zero
if (rewardName == ZERO_BYTES || reward.rewardValue == 0) {
revert KeepWhatsRaisedInvalidInput();
}
}
}

16 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-MED-01
Blocking eI ERR{i N iTe] R Ao I AR g A4=1011sERReds] Calls via front-running #1

Id IMM-MED-01

Severity Medium

Category Bug
Acknowledged

Status Fix ready but not released in
fec67cfe@84c26d4a08f4b0444ac08a9247a760e

Description

is meant to be the dedicated entrypoint of the CC Protocol for creating crowdfunding
campaigns across various platforms. However, the implementation of its factory method, R eI s
allows an attacker to actively block the creation of new contracts, effectively bricking the
protocol until the attack is stopped. The attack is not economically expensive, as it requires only payments
for gas to be made without additional token or coin transfers.

CampaignInfoFactory.createCampaignReERGCEEEWRidentifierHashieEIEIn LI ol lel s It NUTp [(o [V [N DA (o]

the campaign, besides the address itself, of course. This ID isn't concatenated/combined with any
other identifying information (e.g. iy haaueas), Which allows an attacker to grief the (GOt T ST 8]

contract by front-running valid calls to SEl I iT F IR I g IMAg-I=8=N o L3R4y and creating campaigns using

the same as specified in the valid calls.

checks whether a campaign exists using the given identifier in the validation stage of the
method and reverts if a conflict is identified:

TypeScript

function createCampaign(
address creator,
bytes32 identifierHash,
bytes32[] calldata selectedPlatformHash,
bytes32[] calldata platformDataKey,
bytes32[] calldata platformDataValue,
CampaignData calldata campaignData

17 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

) external override {

address cloneExists = identifierToCampaignInfo[identifierHash];
if (cloneExists !'= address(9)) {
revert CampaignInfoFactoryCampaignWithSameIdentifierExists(
identifierHash,
cloneExists

)

Since there are no upfront costs for creating a campaign, a malicious counterparty can effectively block all
calls to R ATICEIrY. Additionally, depending on how contracts are linked to the
crowdfunding campaigns located on off-chain platforms, other user's crowdfunding campaigns might be
registered with the attacker as the owner: since the call can be front-run, an attacker can
supply the same used for identifying the campaign on off-chain platforms, but specify their
own address as the [iiSs.

Recommendation

Use identifiers validated to be linked to a campaign [Sgya9s, for example, by hashing the concatenation of
and values. On top of this, security can be improved further by receiving and
validating a signature made by the creator for the hash of the concatenation of EWeli dentifierHashl
Receiving a signature of the value itself would be insufficient as an attacker would be able
to sign it using their own key and supply their own address as the .

18 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-MED-02
Blocking pledge functions via front-running #4

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 1d6ad873f7ca30cd6eab33cfff39022508149dad
Description

The EHIGEIRREIRE contract contains a critical design flaw in its pledge functions (Yl ERd gl VI EIye!

and [IELEEHIYLENE) that allows attackers to perform front-running attacks against specific campaigns.

Both pledge functions accept a pledgeld parameter that must be unique:

TypeScript
/**
* @notice Allows a backer to pledge for a reward.
* @dev The first element of the “reward™ array must be a reward tier and the other
elements can be either reward tiers or non-reward tiers.
* The non-reward tiers cannot be pledged for without a reward.
* @param pledgeId The unique identifier of the pledge.
* @param backer The address of the backer making the pledge.
* @param tip An optional tip can be added during the process.
* @param reward An array of reward names.
&7
function pledgeForAReward(
bytes32 pledgeld,
address backer,
uint256 tip,
bytes32[] calldata reward

If a pledgeld is already used, the transaction reverts:

19 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

TypeScript
if(s_processedPledges[pledgeId])({
revert KeepWhatsRaisedPledgeAlreadyProcessed(pledgeld);

}
s_processedPledges[pledgeId] = true;

This ID isn't concatenated/combined with any other identifying information (e.g. P tes), Which allows
an attacker to grief the [(SFJUEIREIRLE contract by front-running valid calls to pledge functions using the

EInlApledgeIdh

Attackers can monitor blockchain for pending pledge transactions, extract the values, and
front-run them with zero-amount pledges using the same IDs. After this, the user's request with that

OIRTe I L Will revert.
This allows attackers to effectively block all calls to [N I{A R TIVIF-IEAE el and [Nt K g2 e .

Recommendation

Replace externally-provided pledge IDs with internally generated ones. It's sufficient to use in
the [JRLILEI| generation.

20 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-MED-03
INRReIa\IeYdabal treasury ends up with locked funds if canceled after success condition
#8
Id IMM-MED-03
Severity Medium
Category Bug
Acknowledged
Status Fix ready but not released in
ad31321321584bbdf81e39c5df94ce88c2e@alb4
Description

For legal purposes and to protect the backers malicious or otherwise non-compliant campaign owners, the
platform admin is able to pause and cancel the treasury contracts used by campaigns on their platform.
Additionally, the owner themselves is able to cancel specific treasuries (e.g.

NIRRTl eI NN Supports cancellation by both owner and platform admin), or the
campaign.

The global protocol admin is also able to cancel campaigns (CElIErR:{ 1 PRt 1l Ie=1 1= 849). Overall, the CC
Protocol implements a pretty advanced and layered pausing/cancelation scheme here, all for the sake of
the backers.

One of the core requirements for cancelation is that it must not block backer refunds, so that backers are
able to withdraw their pledged funds from a canceled campaign. See (NN IR iIatee, for
example: it is blocked when a treasury is paused (indicated a temporarily frozen state enabled to
investigate or verify the campaign), but does depend on the cancelation of the treasury:

TypeScript
function claimRefund(
uint256 tokenId

external

currentTimeIsGreater (INFO.getLaunchTime())
whenCampaignNotPaused // <-- checks only for campaign/treasury pause

21 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

whenNotPaused
{
if (block.timestamp >= INFO.getDeadline() && _checkSuccessCondition()) {
revert Al10rNothingNotClaimable(tokenId);
}
}

functions in a similar way, but additionally checks for cancellation to allow
refunds for a set time after cancellation. [REIgN AT however, has a subtle issue in the
method, which prevents refunds from succeeding if the campaign or treasury is canceled when the
success condition is passed: the very beginning of the method listed above contains a check
that prevents refunds after the deadline and when is true (which happens when
enough funds are raised). Even if the treasury/campaign is canceled at this point, the refund won't work,
completely breaking the core requirement of cancelations mentioned earlier.

Furthermore, since the and methods of [N aEIey Will be blocked, too (as they
should be, since cancelation means that no funds should be distributed to the campaign owner or

platform), there will be no way to unlock the funds (cancelation is a one-way process, it isn't possible to
"un-cancel" the treasury or campaign). They will remain frozen forever on the treasury contract.

An additional issue worth to be highlighted here is that the cancellation can occur between calls to
and withdraw, which would leave the contract in a state which would make no sense even if
the issue with refunds isn't taken into account. Since fees have already been disbursed, some of the

pledged funds have been transferred. As such, if backers will attempt to refund their pledges, some of them

will not be successful due to insufficient funds being left in the treasury.

Recommendation

Cancelations must be allowed even after the campaign goal is met — this was confirmed with the CC

Protocol team during a meeting.

As such, the EMEIR of [NRKENIdIl: Must be adjusted to account for cancellations after the deadline

has passed and the goal has been reached. Additionally, cancellations must not be allowed to pass

between disburseFees and withdraw calls as they will lead to protocol insolvency: despite the

treasury/campaign being canceled, not all backers will be able to refund their pledges.

22 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

This might require re-organizing the and methods into a single method which
calculates the fees and payouts and stores them in the contract state, for all the parties to be able to
withdraw through separate calls. This way, there'd be no way for a cancellation to occur in between these

two method calls.

23 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-MED-04
Gateway fee bypass #19

Id IMM-MED-04

Severity Medium

Category Bug

Status Fixed in 783fb90a05982c899ba0fdcd92d7d3ce975e2d14
Description

Backers can completely bypass gateway fees by calling QJLfERARIVENEIRI®] or pledgehfdleN i -EIg (@)
directly instead of using the intended gl lRRNIA@) function. Gateway fees are only applied when they
exist in the mapping, which is not populated during direct pledge calls.

Gateway fees are calculated in EEINEINEMEINI® by looking up the fee amount using

N NN IRt =IeD]. HOowever, if no fee was previously set for a pledgeld, this function returns
0O, effectively bypassing all gateway fees.

Moreover, it's impossible to set a payment gateway fee later through setPaymentGatewayFee because the
fee will already be calculated in _calculateNetAvailable when executing

pledgeForAReward()/pledgeWithoutAReward()!

TypeScript
function _calculateNetAvailable(bytes32 pledgeId, uint256 tokenId, uint256 pledgeAmount)
internal returns (uint256) {

uint256 totalFee = 0;

// ... other fee calculations

//Payment Gateway Fee Calculation

uint256 paymentGatewayFee = getPaymentGatewayFee(pledgeId); // Returns @ if not set
s_platformFee += paymentGatewayFee;

totalFee += paymentGatewayFee;

return pledgeAmount - totalFee;

24 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

Given that they always deduct money from the backer's wallet, this completely eliminates the purpose of
OIS, Because it's always more profitable for the backer to directly use

pledgeForAReward(OflpledgeWithoutAReward ()l

Recommendation

We recommend reconsidering the logic related to gateway fees. Perhaps it's worth calculating payment
gateway fees globally or adding fee recalculation logic.

With both HEAFLNGEEISE and [EEHIY-ENEIL @)/ (AL RGN ENE(@®), the backer needs to do an

onchain approval. It's unclear why this logic exists if onchain transactions need to be done anyway. It would
make sense if the came from msg.sender instead of the backer. Because then the payment
would be paid when the admin pays for the backer from their wallet

25 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-MED-05

B E-OIINERNIeY leads to restrictions bypass #20

Id IMM-MED-05

Severity Medium

Category Bug

Status Fixed in 4015791a42ad401fcf65757f509cce342ae95c5b
Description

Platform admin can call BN ISIIETe, Which overrides all company data including deadline and
FEBIPTIR, without any checks on updated data.

TypeScript
function configureTreasury(
Config memory config,
CampaignData memory campaignData,
FeeKeys memory feeKeys

external
onlyPlatformAdmin(PLATFORM_HASH)
whenCampaignNotPaused
whenNotPaused
whenCampaignNotCancelled
whenNotCancelled

s_config = config;
s_feeKeys = feeKeys;
s_campaignData = campaignData;

emit TreasuryConfigured(
config,
campaignData,
feeKeys

)

26 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

The problem is that this completely bypasses all logic with in the function

TypeScript
uint256 deadlinelLimit = getDeadline() + s_config.withdrawalDelay;

In fact, platform admin can at any moment set deadlines in the past and withdraw all money through
BEaNE, bypassing existing restrictions.

Recommendation

Add checks inside based on HIRELI T for deadline. Also, in general, it's worth

considering moving away from an architecture where platform admin can change any campaign.

27 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-LOW-01

NI EILETEINNC IR EYddelg Can break existing campaigns #2

Id IMM-LOW-01

Severity LOW

Category Bug

Status Acknowledged
Description

is a singleton configuration contract used across pretty much all CC Protocol contracts to
retrieve shared parameters controlled by the protocol admin. A part of its configuration defines the
crowdfunding platforms listed on the Protocol: the on-chain admin account designated for operating
treasuries on behalf of the platform, the platform fee, and more. Platforms are listed on the CC Protocol by

the protocol admin using the k] EILEIEIRIN R ddE dTelg Mmethod.
Once a platform is listed, it can be chosen by campaign creators in GEleEFR i} Kol -Te o] gVl g-T-FA=10E=11 o =hR=41),

and the platform admin is then able to create treasuries for the campaigns using [N A=l te] gVae oA X

However, platforms can also be delisted by the protocol admin through the ik EUIETE IR LARRI dd EYd kel a 1
method, which does not check whether there exist unfinished campaigns/treasuries using this platform:

TypeScript

function delistPlatform(
bytes32 platformHash

) external onlyOwner platformIsListed(platformHash) {
s_platformIsListed[platformHash] = false;
s_platformAdminAddress[platformHash] = address(9);
s_platformFeePercent[platformHash] = ©;
s_numberOfListedPlatforms.decrement();
emit PlatformDelisted(platformHash);

If a platform is delisted, be it intentionally or accidentally, the existing campaigns and their treasuries can
start malfunctioning, possibly locking funds pledged to them. For example, the [NREg\edbigls treasury's

28 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

method, which calls into] T s I ey, would revert on any call attempt, since
LEXEUERNINFO . getPlatformAdminAddres sVl leRi:1H

TypeScript

function disburseFees()
public
virtual
override
whenCampaignNotPaused
whenCampaignNotCancelled

{

if (!_checkSuccessCondition()) {
revert TreasurySuccessConditionNotFulfilled();

}

TOKEN.safeTransfer(
INFO.getPlatformAdminAddress(PLATFORM_HASH),
platformShare

)5

}

CampaignInfo.getPlatformAdminAddressENRi{ g VEI(e R R IR(AG1 obalParams. getPlatformAdminAddress
which would revert with [EIGEIEIN R EYS Kol gilNe g ey dt=Yd:

TypeScript
function getPlatformAdminAddress(
bytes32 platformHash

external

view

override
platformIsListed(platformHash)
returns (address account)

{
account = s_platformAdminAddress[platformHash];
if (account == address(0)) {
revert GlobalParamsPlatformAdminNotSet(platformHash);
}
}

29 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

Recommendation

Implement a graceful delisting mechanism, which doesn't immediately cause any get calls to retrieve
platform information to start failing, but instead disallows creation of hew campaigns and treasuries using

[lCE ol tef i [STe Mol EYaio i Mg CampaignInfoFactory . createCampaignElgledTreasuryFactory . deploy)

This goes well with the best practice of not making any breaking changes immediately and instead
introducing them with a lockup period after which the change goes live.

30 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-LOW-02

No control over expected fees during SEllEER{s NI Te] =T Aol sV AN gL A== R R=g| # 3

Id IMM-LOW-02

Severity LOW

Category Bug

Status Fixed in
fOca7c769670d97ba8c86c23b4e935006e0bce00

Description

CEN T EI (I Nal Lol e[RRI AR g -Y =0l IS Mmeant to be used by ordinary users to create new crowdfunding

campaigns using the CC Protocol and various off-chain platforms.

An economic incentive for handling campaigns is made for the Protocol and the platforms listed on it in the

forms of fees paid out by the campaign treasuries once the treasury success condition is fulfilled. For

transparency, the percentage of these fees is locked in at creation time.

The protocol fee is saved as an immutable value using

CampaignInfoFactory.createCampaignp

TypeScript

function createCampaign(
address creator,
bytes32 identifierHash,
bytes32[] calldata selectedPlatformHash,
bytes32[] calldata platformDataKey,
bytes32[] calldata platformDataValue,
CampaignData calldata campaignData

) external override {

bytes memory args = abi.encode(
s_treasuryFactoryAddress,
GLOBAL_PARAMS.getTokenAddress()
GLOBAL_PARAMS .getProtocolFeePercent(), // <-- Here!
identifierHash

s

address clone = Clones.cloneWithImmutableArgs(s_implementation,

31 Immunefi Audits

OpenZeppelin "Clones" in

args);

Immunefi / CC Protocol

@ Immunefi

And the ©platform fees are saved in (EN NI TS EIRPLs, WwWhich is called by

CampaignInfoFactory.createCampaignjlelaif:ztat=Igeilelaliglek

TypeScript

function initialize(
address creator,
IGlobalParams globalParams,
bytes32[] calldata selectedPlatformHash,
bytes32[] calldata platformDataKey,
bytes32[] calldata platformDataValue,
CampaignData calldata campaignData

) external initializer {

uint256 len = selectedPlatformHash.length;
for (uint256 i = 0; i < len; ++i) {
s_platformFeePercent[selectedPlatformHash[i]] = GLOBAL_PARAMS
.getPlatformFeePercent(selectedPlatformHash[i]);
s_isSelectedPlatform[selectedPlatformHash[i]] = true;

In our perspective, there is a slight issue with this implementation: the fees are retrieved during execution
time without the ability to limit them or specify the expected fees, like one usually can in other protocols
(think about limiting slippage).

For correct and meaningful campaign creations, the user should be able to specify the expected fees in the
call, or the documentation for it should directly state that, since fees are locked in at
creation, calls to must be made through intermediate contracts which verify that the fee
hasn't changed from the user's expectation. Link to current doc: CampaigninfoFactory.createCampaign.

Recommendation

Add expectedProtocolFeePercent and expectedPlatformFeePercent parameters to the
Sl LI Tt g g Al Ry Method. Alternatively, describe this specific behaviour in the

documentation.

32 Immunefi Audits Immunefi / CC Protocol

https://github.com/ccprotocol/ccprotocol-contracts-internal/blob/e44a2d34429de9ba8f5fc9a984ee600dada6289b/src/interfaces/ICampaignInfoFactory.sol#L35

@ Immunefi

IMM-LOW-03
Campaign owner can set arbitrary fees for #11

Id IMM-LOW-03

Severity LOW

Category Bug

Status Fixed in 9f0e5ab24503574bb96e3d3cf068f872e0604131
Description

The [EIILEIRIEE treasury utilizes a complex fee structure, with two separate flat fee values enacted
during withdrawals, multiple gross percentage-based fees enacted during pledges, and others.

The mentioned flat fees and gross percentage-based fees are configured through custom platform data
values set in the SEllEIId{e contract linked to the treasury.

Platform data keys to be used for retrieving these fee values are controlled by the platform admin through

[gleYKeepWhatsRaised. configureTreasuryfylcilgleleR

TypeScript

function configureTreasury(
Config memory config,
CampaignData memory campaignData,
FeeKeys memory feeKeys

external
onlyPlatformAdmin(PLATFORM_HASH)
whenCampaignNotPaused
whenNotPaused
whenCampaignNotCancelled
whenNotCancelled

s_config = config;
s_feeKeys = feeKeys; // <-- fee platform data keys set here

s_campaignData = campaignData;

emit TreasuryConfigured(

33 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

config,
campaignData,
feeKeys

)

Keys set here are used throughout the contract in the following manner (example from):

TypeScript
function withdraw(
uint256 amount

public

currentTimeIsLess(getDeadline() + s_config.withdrawalDelay)
whenNotPaused

whenNotCancelled

withdrawalEnabled

uint256 flatFee = uint256(INFO.getPlatformData(s_feeKeys.flatFeeKey));
uint256 cumulativeFee = uint256(INFO.getPlatformData(s_feeKeys.cumulativeFlatFeeKey));

el LI T M-I ARl gBEYRsY Simply fetches these values from the contract storage, where they're put
during the campaign initialization (see @Il EIRA NN PRSI SFLS).

As it stands, the values of any platform data stored in the contract is fully controlled by the
user who calls the initial campaign creation factory method, S I IR S R S E e e e, This user
can well be the campaign owner themselves, since there is no access control imposed on campaign
creation. The campaign owner, or the campaign creator, can set arbitrary values for valid platform data keys,
and, as a consequence, arbitrary fee values for the treasury.

Since the treasury itself is created through the [IgEE IRl Me kel Mmethod by the platform admin at a

later stage, they are able to verify that the appropriate fee values have been set in the [GEllEIT{aiNgiYe
contract.

34 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

For this reason, we have set the vulnerability's severity to low, however we still consider it to be a security
issue which can lead to the erosion of trust platforms have in the protocol, since they will have to perform
thorough manual validation instead of controlling the fees themselves.

Recommendation

We recommend configuring fees directly through the treasury, which is logically owned
and managed by the admin of the platform to which the treasury is linked. This makes sense, as different
platforms might register the treasury, and want to set different fee values. So called "payment gateway"
fees are already configured this way. The method configures the platform data keys to
be used for fees, so it can be repurposed to configure the fees directly instead.

35 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-LOW-04
Refunds can drop the treasury below the goal right before the
deadline #13

Id IMM-LOW-04

Severity LOW

Category Bug

Status Acknowledged
Description

The registry implements a pledge collection treasury which functions in a manner very close
to classic Kickstarter campaigns: either the campaign reaches its funding goal and the funds are unlocked
for the owner to withdraw, or the campaign reaches the deadline (or is canceled) without reaching its
funding goal, in which case backers can refund their pledges.

Additionally, refunds are also available during the whole duration of the campaign, allowing it to operate
smoothly without "freezing" the backer's pledges until the very end. Kickstarter provides similar
functionality, but disallows pledge refunds in the last 24 hours of the campaign if they would drop the
campaign below the goal (see the following article from Kickstarter: Can-l-cancel-a-pledge).

This provides an additional level of financial stability to campaigns, especially when the amount of funds
collected is floating near the campaign goal. CC Protocol's treasury does not implement any
similar time locking mechanisms, allowing refunds right up until the deadline:

TypeScript
function claimRefund(
uint256 tokenId

external

currentTimeIsGreater (INFO.getLaunchTime())
whenCampaignNotPaused

whenNotPaused

if (block.timestamp >= INFO.getDeadline() && _checkSuccessCondition())
revert AllOrNothingNotClaimable(tokenId);

36 Immunefi Audits Immunefi / CC Protocol

https://help.kickstarter.com/hc/en-us/articles/115005133013-Can-I-cancel-a-pledge

@ Immunefi

This is not a security issue which would result in the protocol functioning in an exploitable way as it is, but
implementing this functionality can make the fund collection process work in a more expected and stable
manner.

Recommendation

Implement additional checks in which would disallow refunds when a locking
period before the deadline is reached, if the requested refunds would drop the campaign below the goal.

Since this locking period might differ in duration between platforms, it can be added as a configuration
option to the treasury itself, controllable by the platform admin below campaign launch.

37 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-LOW-05

should check that infoAddress is registered in
CampaigninfoFactory.isValidCampaignlnfo #17

Id IMM-LOW-05

Severity LOW

Category Bug
Acknowledged

Status Fix ready but not released in
3e89545b649f45dd659eaeb14c1343eabab547a7

Description
is one of the core contracts of the CC Protocol, meant to be used as the single trusted

way of creating treasuries for campaigns. In fact, Sl il T NIl s gl gulglde Validates that the caller is
the singleton IEERNINIEEEIR instance of the protocol.

CEERNEd I s Sellel;, the actual factory method of the contract, takes a HgRYXIgFS parameter, which is
supposed to be the address of the [eElfsEMldfe contract for which the treasury is being deployed.

However, deploy does not verify this address to be a valid Campaigninfo contract created by the
counterpart. As a result, a platform admin might be tricked, or might accidentally
deploy a treasury for a malicious or otherwise non-standard contract, which would put the
funds of backers using the treasury at risk.

We are not sure how the platform admins' interaction with LIgEHIMIElagday Will be implemented, but
consider this issue to be worthwhile to fix in order to mitigate the possibility of problems arising from it.

Recommendation

e EMINNTETaRgY contract stores a public mapping HEEIRK(eENTE INRe. in Which the keys equal to
addresses of [(ENEIaIIRe contracts created through SENTEIIl TR lad MM g-CIR=Ie=e LRy are set to true.

We propose validating the parameter using this mapping.

38 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-LOW-06
Inconsistent integration of multi-platform campaigns #21

Id IMM-LOW-06

Severity LOW

Category Bug

Status Acknowledged
Description

CC Protocol considers multi-platform campaigns as one of the unique interoperability features. It is
currently not one of the main features, however it is planned to be used in the long term. There are currently
two separate treasury implementations, which can be used to host a campaign on different platforms with

different treasury kinds: the [XRIJg\eidsbie¥ treasury and the CSSEISENEL treasury.

While relies on the data configured by the owner through the main contract,
stores the campaign launch time, goal, and deadline separately. This means that,
potentially, the deadlines for pledges and other processes might differ for these two treasuries of the same
campaign. If the deadline set in is earlier than the deadline set in [CHSLEITLEINEY, then
pledges to the treasury would be disallowed, but would be allowed to continue to

KeepWhatsRaised!

The presented case is obviously not an issue, however, besides pledges, the refund period of

CENGEIREME| can also intersect with the deadline of [ENEIAINIRY used by NRlIgNIdbi¥y. IN such case,
an [NRKE\dENYy treasury which passes the success condition ORI IEIGERININIIAOIPS
IO -AACIEINN O] (Melple L Mo FRkRels) at one point in time, might not pass this condition later, if a

backer decides to withdraw funds from the (ISJIMEIRREIREe treasury, which would be accounted in the

CampaignInfo.getTotalRaisedAmountfe=UIR

Thus, when campaigns are hosted on multiple platforms, if configured improperly, their different stages and
mechanics can conflict with one another, and lead to cases where one of the treasuries (e.q. [NHO ALY
is first considered to be successful, at which point occurs, and then changes to and
unsuccessful state, which leads to backers being able to call SEILSIge even though their funds have
already been taxed and perhaps even withdrawn. This specific case is not a severely critical issue, since the
ISR s treasury's mechanisms intentionally allow pledges/withdrawals during the whole duration of
the campaign, so the campaign is able to change its success at the last minute anyway. We still consider

39 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

the issue overall to be worth noting, however, and multi-platform treasury integrations should be
architecturally redesigned to avoid such issues in future development.

Recommendation

Consider controlling the shared parameters of all treasuries (campaign launch time, goal, deadline) through
the shared [ELlEI(INlfe contract, instead of storing them separately for different platforms' treasuries.
Consider reworking the treasury integration to avoid treasuries' success conditions relying on one another.

40 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-INSIGHT-01
Incorrect description of the function #6

Id IMM-INSIGHT-01

Severity

Category Informational

Status Fixed in 73160f32df243626fb54c168afcd2176a46fe205
Description

The function in the [CEIEITREIRT contract is described incorrectly. The description states:
“Allows a campaign owner or authorized user to claim remaining campaign funds.”

While in reality, it can only be accessed by the platform admin.

TypeScript
/**

* @dev Allows a campaign owner or authorized user to claim remaining campaign funds.
*
* Requirements:
* - Claim period must have started and funds must be available.
* - Cannot be previously claimed.
Wy
function claimFund()
external
onlyPlatformAdmin(PLATFORM_HASH)

whenCampaignNotPaused
whenNotPaused

Recommendation

Fix documentation of function

41 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-INSIGHT-02

CampaignInfoFactory.createCampaignfplatformDataKeyRellleEdlo]aRe]olulaalP-\ule]ak: S,

Id IMM-INSIGHT-02

Severity

Category Gas Optimization

Status Fixed in 7f3115f4beebb9afdf08a5e7bbf390888ec005e9
Description

=T ERR I el =T Ao AR A g TR =1 8=1 (o= BRqg| Validates nearly all arguments prior to doing any gas-costly actions

such as [eEllEMGINYe contract cloning and its initialization.

However, [QERTIGIBEIEIEY Values are validated only during the eI T T IR#E=ASP4s Call, which occurs

at a stage near the end of the flow. Invalid ST aRs Iy Values detected would revert
the transaction, which at their current point of validation would've spent quite a lot of gas.

Of course, in the context of the Celo blockchain, on which the CC Protocol will be operating, this issue isn't
as noticeable as it would be on Ethereum, for example, thanks to the lower fees. However, we still consider
such optimizations important for the overall sustainability and quality of the contracts.

Recommendation

Move PRI IRy parameter validation to an earlier stage of the flow. For example, to
the beginning of the method itself, where all other validation takes place.

42 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-INSIGHT-03
lacks way to provide new platform data during

updateSelectedPlatformg:ale;

Id IMM-INSIGHT-03

Category Informational

Status Fixed in cf02e548dc5019be2335eb55719902¢3d9e4fcOb
Description

contracts are used by the CC Protocol as the main source of information about ongoing
crowdfunding campaigns: they hold the campaign launch time, deadline, goal, and other parameters. In
particular, stores platform-specific data values, which can be used by other contracts in the
system when working with campaigns in the context of a platform. The registry, for
example, uses platform data values stored in the campaign as a source of fee information during

withdrawals (see (S F e EIRI=e IFRA Lo [g=11).

Currently, the SEllEMaINIgd contract allows setting up these data values during initialization through the

CampaignInfoFactory.createCampaignitlciialele R WVallelg eI IR ElnpNelgR(edCampaignInfo.initialize}

TypeScript

function initialize(
address creator,
IGlobalParams globalParams,
bytes32[] calldata selectedPlatformHash,
bytes32[] calldata platformDataKey,
bytes32[] calldata platformDataValue,
CampaignData calldata campaignData

) external initializer {

for (uint256 i = 0; i < len; ++i) {
isValid = GLOBAL_PARAMS.checkIfPlatformDataKeyValid(
platformDataKey[i]
i
if (!isValid) {

43 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

revert CampaignInfoInvalidInput();

}
s_platformData[platformDataKey[i]] = platformDataValue[i];

When platforms are chosen during campaign creation, there is no problem with providing the platform data
they require for correct operation of treasuries and other components. However, platforms can also be
selected later using the method, which fails to provide a way to set
new platform data values. As such, if a new platform is selected, and it turns out to require platform values
to be set for treasuries to work, the user's campaign just will not function correctly with that platform. If the
platform admin does their due diligence to validate the campaign configuration, they might notice the lack
of necessary values and reject treasury setup for the campaign, but they might miss this issue and create
the treasury anyway, in which case it might generally fail to function properly due to inconsistencies with
the platform data.

Furthermore, quoting the CC Protocol team's reply to our questions on this topic, "Platform data can be
completely skipped during campaign creation". As such, there must be a way for a user to set or update it
later for their campaign to be correctly listed on crowdfunding platforms.

Notice that the audit report by PeckShield from May 20th, 2025 also mentioned a similar issue with

OEN S EI (N el oVl EY A== R=Yeau=te LAY hReIg1: it failed to set the newly chosen platform fee, which would also lead
to an inconsistent state of the SEll«EIR{gilg{e contract.

Recommendation

Allow configuring platform data during JeEIt=NII4et [AETAgIgn Method. This will allow a user to set up the
necessary data values when they choose a new platform, and to reconfigure existing values, if needed.

44 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-INSIGHT-04
platformDataValucfRVEINEIS T @AY o Y[1A N[CampaignInfoFactory. createCampaign
#12

Id IMM-INSIGHT-04

Category Informational

Status Fixed in ed555d20638ec5ceb6f5ae087928231987ff71bdc
Description

(=N E N T X I A RN o= s R8s | enforces pretty decent validation on all parameters passed to it, and

it should, since the created campaign will be initialized using them. Platform-specific data values should be
validated particularly thoroughly, as there is currently no way to modify them after campaign creation.

Platform data keys are already properly validated during [GELlEIR(IN i I Fas-18¥4s, but the values
themselves lack any sort of validation. In our opinion, one check that should be enforced is that the values

are not zero, since the platform data getter, [N EIRAINITM-CIAIEIATIguELR. USses zero to check if the
platform data value is present:

TypeScript
function getPlatformData(
bytes32 platformDataKey
) external view override returns (bytes32) {
bytes32 platformDataValue = s_platformData[platformDataKey];
if (platformDataValue == bytes32(0)) {
revert CampaignInfoInvalidInput();
}

return platformDataValue;

Recommendation

Validate that [JEMIJEDEIEVEINE values are not zero in SENEMINI TS IRV OF

CampaignInfoFactory.createCampaignillelalelilel-Nel{al-I el sl-To7EH

45 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-INSIGHT-05
Validate creator to be non-zero during #16

Id IMM-INSIGHT-05

Severity

Category Informational

Status Fixed in aa2f69d0d3584f5c7fea9752251a85ed36bab9bd
Description

The CC Protocol contracts implement non-zero address checks pretty much everywhere where addresses

PV S R S E Il 6] (GlobalParams . updateProtocolAdminAddressBGlobalParams . enlistPlat formisy(e}

O Nl T MR AR Al able also performs this validation, albeit indirectly: the OpenZeppelin Ownable
contract checks that the new owner is not zero.

TypeScript
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(@)) {

revert OwnableInvalidOwner(address(0));

}

_transferOwnership(newOwner) ;

However, the factory method (Gl EIR{ N f Tt a AR Ag-FIA- 11 o MRy dOes not validate that the initial creator
address is hon-zero, and passes it as is to [(I X I T IRS IS P4=. O] - LIRS EIEP4s, in turn, calls

the _transferOwnershipmethod e argument, which also does not perform this

check.

PN CIVIMCampaignInfo. transferOwnershipfERIAee SCINRMINCampaignInfoFactory . createCampaignl

which can create a campaign and set its owner to the zero address, pretty much burning the campaign.

Recommendation

Validate the creator parameter in SEl (I To Il A R-FIA=I bRy 1O be a non-zero address.

46 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

IMM-INSIGHT-06
Inaccurate doc for finance-related function #18

Id IMM-INSIGHT-06

Severity

Category Informational

Status Fixed in e8ccf17¢96143d0e8c401d27¢c8d6117502782419
Description

Documentation states that the [(SS I LEIRTENRl MR LI\ ATWVEEIIRE method calculates and accounts

for the "Columbian creator tax", when applicable. In fact, it does no such thing, but it does account for the
"payment gateway fee" which the documentation fails to mention.

TypeScript
/**
* @dev Calculates the net available amount after deducting platform fees and applicable
taxes
* @param pledgeId The unique identifier of the pledge.
@param tokenId The ID of the token representing the pledge.
@param pledgeAmount The total pledge amount before any deductions
@return The net available amount after all fees and taxes are deducted

*

*

*

*

* @notice This function performs the following calculations:

* 1. Applies all gross percentage fees based on platform configuration

* 2. Calculates Colombian creator tax if applicable (0.4% effective rate)
*

3. Updates the total platform fee accumulator

function _calculateNetAvailable(bytes32 pledgeld, uint256 tokenId, uint256 pledgeAmount)
internal returns (uint256) {
uint256 totalFee = 0;

// Gross Percentage Fee Calculation
uint256 len = s_feeKeys.grossPercentageFeeKeys.length;
for (uint256 i = 0; i < len; i++) {
uint256 fee = (pledgeAmount *
uint256 (INFO.getPlatformData(s_feeKeys.grossPercentageFeeKeys[i])))
/ PERCENT_DIVIDER;

47 Immunefi Audits Immunefi / CC Protocol

@ Immunefi

s_platformFee += fee;
totalFee += fee;

//Payment Gateway Fee Calculation

uint256 paymentGatewayFee = getPaymentGatewayFee(pledgeId);
s_platformFee += paymentGatewayFee;

totalFee += paymentGatewayFee;

s_tokenToPaymentFee[tokenId] = totalFee;

return pledgeAmount - totalFee;

We think all documentation related to finances and the accounting of various fees and taxes needs to be
accurate to avoid confusing any potential users who would see this documentation.

Recommendation

Fix the doc comment to properly describe the calculations made in the IEIANEN\EILVYEEIEE Mmethod.

48 Immunefi Audits Immunefi / CC Protocol

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	FINDINGS
	IMM-CRIT-01
	IMM-HIGH-01
	IMM-HIGH-02
	
	
	IMM-HIGH-03
	IMM-MED-01
	IMM-MED-02
	
	
	
	IMM-MED-03
	IMM-MED-04
	
	IMM-MED-05
	
	IMM-LOW-01
	IMM-LOW-02
	
	
	IMM-LOW-03
	
	IMM-LOW-04
	
	
	
	IMM-LOW-05
	
	IMM-LOW-06
	
	IMM-INSIGHT-01
	
	IMM-INSIGHT-02
	
	IMM-INSIGHT-03
	
	IMM-INSIGHT-04
	
	IMM-INSIGHT-05
	
	IMM-INSIGHT-06
	

