

DATE​ August 5, 2025

AUDITOR​ Neplox, Security Researchers

REPORT BY​ Immunefi

01​ Overview
02​ Terminology
03​ Executive Summary
04​ Findings

​

ABOUT IMMUNEFI​ 3
TERMINOLOGY​ 4
EXECUTIVE SUMMARY​ 5
FINDINGS​ 6

IMM-CRIT-01​ 6

IMM-HIGH-01​ 9

IMM-HIGH-02​ 11

IMM-HIGH-03​ 13

IMM-MED-01​ 17

IMM-MED-02​ 19

IMM-MED-03​ 21

IMM-MED-04​ 24

IMM-MED-05​ 26

IMM-LOW-01​ 28

IMM-LOW-02​ 31

IMM-LOW-03​ 33

IMM-LOW-04​ 36

IMM-LOW-05​ 38

IMM-LOW-06​ 39

IMM-INSIGHT-01​ 41

IMM-INSIGHT-02​ 42

IMM-INSIGHT-03​ 43

IMM-INSIGHT-04​ 45

IMM-INSIGHT-05​ 46

IMM-INSIGHT-06​ 47

2​ Immunefi Audits​ Immunefi / CC Protocol

​

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than

$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing

over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a

single command center to more than 300 projects — including Sky (formerly MakerDAO), Optimism,

Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,

AAVE, ZKsync, Morpho, Ethena, USDT0, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,

Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi’s market leading products

and community of elite security researchers with a curated set of the very best security products and

technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus

Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi’s proprietary vulnerabilities dataset — the largest and most

comprehensive in web3, ensuring that security leaders and teams have the best possible tools for

identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3​ Immunefi Audits​ Immunefi / CC Protocol

​

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our

findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

-​ Likelihood represents the likelihood of a finding to be triggered or exploited in practice

-​ Impact specifies the technical and business-related consequences of a finding

-​ Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are

derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

LIKELIHOOD IMPACT

 HIGH MEDIUM LOW

CRITICAL Critical Critical High

HIGH High High Medium

MEDIUM Medium Medium Low

LOW Low

NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as

critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the

severity correlates with the associated risk. However, every finding's risk should always be closely checked,

regardless of severity.

4​ Immunefi Audits​ Immunefi / CC Protocol

​

EXECUTIVE SUMMARY

Over the course of 7 days in total, CC Protocol engaged with Immunefi to review the

ccprotocol-contracts-internal repository. In this period of time a total of 21 issues were identified.

SUMMARY

Name CC Protocol

Repository https://github.com/ccprotocol/ccprotocol-contracts-internal

Audit Commit e44a2d34429de9ba8f5fc9a984ee600dada6289b

Type of Project Infrastructure

Audit Timeline July 1st - July 7th

Fix Period July 10th - Aug 4th

ISSUES FOUND

Severity Count Fixed Acknowledged

Critical 1 1 0

High 3 2 1

Medium 5 3 2

Low 6 2 4

Insights 6 6 0

CATEGORY BREAKDOWN

Bug 15

Gas Optimization 1

Informational 5

5​ Immunefi Audits​ Immunefi / CC Protocol

https://github.com/ccprotocol/ccprotocol-contracts-internal
https://github.com/ccprotocol/ccprotocol-contracts-internal

​

FINDINGS

IMM-CRIT-01
KeepWhatsRaised withdrawals can be manipulated to leave no funds for campaign

owner #15

Id IMM-CRIT-01

Severity Critical

Category Bug

Status
Fixed in
e8ccf17c96143d0e8c401d27c8d61175b2782419

Description

The KeepWhatsRaised treasury implements a complex withdrawal scheme in its withdraw method with

varying post-/pre-deadline withdrawal logic, varying schemes, and Columbian tax accounting. Withdrawals

are open as soon as the platform admin enables them through approveWithdrawal, and are available up until

the withdrawal delay after the campaign deadline (enforced through the currentTimeIsLess(getDeadline()

+ s_config.withdrawalDelay) modifier call in the method). Pre-deadline withdrawals require specifying the

amount to withdraw, which will be deducted from the pledged amount storage variable

s_availablePledgedAmount. The withdrawal amount is split into fees which go to the platform, protocol fees,

and the value which actually goes to the campaign owner.

An interesting functionality of the withdraw method of the treasuries (both AllOrNothing and

KeepWhatsRaised) we have noted is the lack of access control enforced: any user or contract on the network

where the contracts are deployed is able to perform the withdrawal. Supposedly, this was planned to be

justified by the withdrawal implementation, which always transfers funds to the campaign owner and

nobody else.

In the case of AllOrNothing, we, indeed, do not consider there to be any issue with the withdraw method

being callable by anyone. KeepWhatsRaised's case, however, is more complex, since it performs the fee

accounting logic within withdraw. We'd like to point out one specific kind of fees accounted for in

KeepWhatsRaised.withdraw: flat rate platform fees, specified by the s_feeKeys.flatFeeKey and

6​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

s_feeKeys.cumulativeFlatFeeKey platform data values. These fees are subtracted from the

withdrawalAmount without being scaled or transformed in any manner:

function withdraw(
 uint256 amount
)
 public
 currentTimeIsLess(getDeadline() + s_config.withdrawalDelay)
 whenNotPaused
 whenNotCancelled
 withdrawalEnabled
{
 ...

 // Flat fee calculation
 if(currentTime > getDeadline()){
 if(withdrawalAmount == 0){
 revert KeepWhatsRaisedAlreadyWithdrawn();
 }
 if(withdrawalAmount < s_config.minimumWithdrawalForFeeExemption){
 s_platformFee += flatFee;
 totalFee += flatFee;
 }
 } else {
 withdrawalAmount = amount;
 if(withdrawalAmount == 0){
 revert KeepWhatsRaisedInvalidInput();
 }
 if(withdrawalAmount > s_availablePledgedAmount){
 revert KeepWhatsRaisedWithdrawalOverload(s_availablePledgedAmount,
withdrawalAmount, totalFee);
 }

 if(withdrawalAmount < s_config.minimumWithdrawalForFeeExemption){
 s_platformFee += cumulativeFee;
 totalFee += cumulativeFee;
 } else {
 s_platformFee += flatFee;
 totalFee += flatFee;
 }
 }

 // Other Fees

7​ Immunefi Audits​ Immunefi / CC Protocol

​

 ...

 // Fees subtracted from withdrawal amount
 s_availablePledgedAmount -= withdrawalAmount;
 withdrawalAmount -= totalFee;

 TOKEN.safeTransfer(recipient, withdrawalAmount);

 emit WithdrawalWithFeeSuccessful(recipient, withdrawalAmount, totalFee);
}

Note how these fees are subtracted during each withdraw call, and there is no limit on the minimal

withdrawal amount, meaning that the resulting withdrawalAmount might even be zero after accounting for

the flat rate fees. By combining this with the lack of access controls on the withdraw method, we have

come to the realization that a malicious actor can repeatedly call withdraw with tiny amount values, just

enough to cover the flat fees, which would account all of the pledged funds as platform fees instead of

funds transferred to the owner. By monitoring Receipt events, the attacker can perform these withdrawals

immediately (granted that they were enabled by the platform admin using approveWithdrawal), leaving the

owner without the chance to receive any funds at all.

Furthermore, this issue can be exploited effortlessly in all instances of the KeepWhatsRaised treasury, in all

campaigns launched on the CC Protocol using it. Such an attack would completely break the protocol, as

none of the campaign owners would actually be left with any funds after their campaign finishes. Resolving

the issue would require the platforms and the protocol to collaborate and manually recalculate all the

pledges made through KeepWhatsRaised in order to correctly distribute them. With all of these points in

mind, we consider the issue to be of critical severity.

Recommendation

Rethink the withdrawal logic, perhaps limiting access to the withdraw method to only the owner of the

campaign and the platform admin (for automated withdrawals). Reconsider the fee structure in

KeepWhatsRaised treasury to avoid flat fees, if possible, or at least enforce minimal withdrawal amounts, so

that the withdrawal amount is not zero after flat fee deduction.

8​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-HIGH-01
KeepWhatsRaised updateDeadline can block claimRefund by setting past deadline

#5

Id IMM-HIGH-01

Severity High

Category Bug

Status
Fixed in
8ac139306900a9df6c73b4455b0607415cbe4773

Description

The updateDeadline function in KeepWhatsRaised contract contains a vulnerability that allows campaign

owners to instantly block user refunds by setting the campaign deadline to a past timestamp.

The updateDeadline function only validates that the new deadline is greater than the launch time, but does

not require the deadline to be in the future:

function updateDeadline(
 uint256 deadline
) external
 onlyPlatformAdminOrCampaignOwner
 onlyBeforeConfigLock
 whenNotPaused
 whenNotCancelled
{
 if (deadline <= getLaunchTime()) { // Only checks against launch time
 revert KeepWhatsRaisedInvalidInput();
 }
 // Missing: deadline > block.timestamp check
 s_campaignData.deadline = deadline;
}

The claimRefund function depends on the deadline through _checkRefundPeriodStatus:

9​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

TypeScript

​

function claimRefund(uint256 tokenId) external {
 if (!_checkRefundPeriodStatus(false)) {
 revert KeepWhatsRaisedNotClaimable(tokenId);
 }
 // refund logic...
}

function _checkRefundPeriodStatus(bool checkIfOver) internal view returns (bool) {
 uint256 deadline = getDeadline();
 bool isCancelled = s_cancellationTime > 0;

 if (!isCancelled) {
 // For non-cancelled campaigns: refund possible only AFTER deadline but BEFORE refund
delay expires
 return block.timestamp > deadline && !refundPeriodOver;
 }
}

1.​ Campaign is running normally with deadline in the future

2.​ Campaign owner sets deadline to N hour ago

3.​ If refundDelay period has already passed since that past time, refunds become impossible forever

Recommendation

Add validation to ensure deadline is always in the future:

if (deadline <= block.timestamp) {
 revert KeepWhatsRaisedInvalidInput();
}

10​ Immunefi Audits​ Immunefi / CC Protocol

​

IMM-HIGH-02
Griefing and freezing of funds through unauthorized pledge calls #7

Id IMM-HIGH-02

Severity High

Category Bug

Status

Acknowledged

Fix ready but not released in​
14dd9e990605d740bb20f13d1468b78fab020f47

Description

As described in issue 3.2 of the CC Protocol audit by PeckShield, the treasuries' pledge methods

(pledgeForAReward, pledgeWithoutAReward) allow unauthorized pledging on behalf of backers who have

approve()d the protocol token spending by a campaign treasury. From the resolution comment in the report,

we understand that this issue has been acknowledged by the team, and the pledging feature

implementation is intended to be this way. However, PeckShield failed to list the appropriate impacts

caused by this issue, which we feel should make it worthwhile to rework the flow.

Since a malicious user (absolutely any on-chain address) can call pledge on behalf of a backer who has

approved token spending, they can block the backer's legitimate pledgeForAReward or

pledgeWithoutAReward calls from succeeding, causing the backer (or the system pledging on behalf of the

backer) to lose funds on gas payments. Token spending approvals are easily trackable thanks to event logs

emitted by pretty much all ERC20 implementations, so an attacker could monitor approvals for the token

used by the protocol to treasury contracts, and instantly execute pledge calls (for example,

pledgeWithoutAReward) with tiny sums, just enough for the call to succeed. Legitimate pledge requests

would fail due to insufficient funds being left in the backer's approval. The backer would have to complete a

refund, and only then retry the pledge. A persistent attacker could use this issue to completely block

pledges to a treasury, sabotaging the campaign it is linked to.

Both AllOrNothing and KeepWhatsRaised treasuries are affected. The current implementation of

KeepWhatsRaised is affected even more so, as it allows refunds to go through only after cancellation or

after the deadline (see KeepWhatsRaised._checkRefundPeriodStatus). This attack would effectively lock the

backer's funds in the campaign without the ability to choose the rewards they want. We consider this to be

an issue far more severe than was initially described by PeckShield in their report. Since in the

11​ Immunefi Audits​ Immunefi / CC Protocol

​

KeepWhatsRaised treasury this issue can be exploitable to temporarily freeze the funds of the backers due

to the refund mechanism, we are rating the vulnerability severity as High.

Recommendation

If indirect pledging is required, for example gas-free pledge transactions, well-established mechanisms

should be used instead, e.g. EIP-2612 or UniSwap's Permit2. If this behaviour and vulnerability is indeed

intentional and there are some more complex reasons why it can't be fixed, the documentation for all the

pledge methods should mention that they should be called from contracts which execute the approve and

pledge in a single transaction.

12​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-HIGH-03
Backers can pledge for rewards without actually paying for them #14

Id IMM-HIGH-03

Severity High

Category Bug

Status
Fixed in
bf841bdb0fb9113ba8a93d1e88d2f7c4b44eb4b2

Description

Both of the existing treasury protocol implementations, AllOrNothing and KeepWhatsRaised, allow backers to

pledge both for rewards and without them using the pledgeForAReward and pledgeWithoutAReward methods,

accordingly.

Both AllOrNothing.pledgeForAReward and KeepWhatsRaised.pledgeForAReward function pretty similarly: the

backer specifies the list of rewards they'd like to pledge for, the method aggregates the prices for those

rewards, which are set by the campaign owner through the treasury's addRewards method, and passes the

sum as the pledgeAmount to the treasury-internal _pledge method. _pledge transfers the total sum of the

rewards and other pledged funds from the backer.

Example from the KeepWhatsRaised treasury:

function pledgeForAReward(
 bytes32 pledgeId,
 address backer,
 uint256 tip,
 bytes32[] calldata reward
)
 public
 currentTimeIsWithinRange(getLaunchTime(), getDeadline())
 whenCampaignNotPaused
 whenNotPaused
 whenCampaignNotCancelled
 whenNotCancelled
{

13​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

 ...
 uint256 rewardLen = reward.length;
 Reward memory tempReward = s_reward[reward[0]];
 ...
 uint256 pledgeAmount = tempReward.rewardValue;
 for (uint256 i = 1; i < rewardLen; i++) {
 if (reward[i] == ZERO_BYTES) {
 revert KeepWhatsRaisedInvalidInput();
 }
 pledgeAmount += s_reward[reward[i]].rewardValue;
 }
 _pledge(pledgeId, backer, reward[0], pledgeAmount, tip, tokenId, reward);
}

function _pledge(
 bytes32 pledgeId,
 address backer,
 bytes32 reward,
 uint256 pledgeAmount,
 uint256 tip,
 uint256 tokenId,
 bytes32[] memory rewards
) private {
 uint256 totalAmount = pledgeAmount + tip;
 TOKEN.safeTransferFrom(backer, address(this), totalAmount);
 ...
}

What we have noticed is that neither AllOrNothing.pledgeForAReward nor

KeepWhatsRaised.pledgeForAReward validate any elements of the reward argument to specify actually

available rewards besides the first one, which is checked to have the isRewardTier flag set:

Reward storage tempReward = s_reward[reward[0]];
if (
 backer == address(0) ||
 rewardLen > s_rewardCounter.current() ||
 reward[0] == ZERO_BYTES ||
 !tempReward.isRewardTier // <-- the only check related to the reward list parameter

14​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

) {
 revert AllOrNothingInvalidInput();
}

In normal use, this shouldn't be an issue: the owner can add and remove rewards dynamically (using the

addRewards and removeReward methods), so rewards pledged for aren't supposed to be valid during the

whole duration of the campaign. However, the lack of this validation leads can be exploited by an attacker

to pledge for real rewards before they are registered in the campaign treasury, either by using well-known

reward identifiers (if such can exist), retrieving them from external sources (e.g. the API of the platform

which hosts the campaign), or by front-running all addRewards calls made by crowdfunding owners across

the whole CC Protocol. If pledging for rewards which do not yet exist at the moment of the pledge, they will

be contained in the Receipt event emitted by the _pledge methods of the treasuries, but will not be

accounted for in the pledge, effectively costing zero. The attacker would only have to pay for gas fees and

protocol/platform fees (if any), which in any normal situation should be much less than the rewards

themselves would cost.

Considering that both the AllOrNothing and KeepWhatsRaised treasuries are susceptible to this issue, and its

exploitation does not have any unusual preconditions, we are rating it as being of high severity.

Recommendation

As remediation we recommend adding extra validation steps to both AllOrNothing.pledgeForAReward and

KeepWhatsRaised.pledgeForAReward which check that the reward parameter contains rewards actually

registered in the treasury.

Checking the s_reward[reward[i]].rewardValue != 0 condition should be valid, since the addRewards

methods specifically check that added rewards' values are non-zero:

function addRewards(
 bytes32[] calldata rewardNames,
 Reward[] calldata rewards
)
 external
 onlyCampaignOwner
 whenCampaignNotPaused
 whenNotPaused

15​ Immunefi Audits​ Immunefi / CC Protocol

​

 whenCampaignNotCancelled
 whenNotCancelled
{
 if (rewardNames.length != rewards.length) {
 revert KeepWhatsRaisedInvalidInput();
 }

 for (uint256 i = 0; i < rewardNames.length; i++) {
 bytes32 rewardName = rewardNames[i];
 Reward calldata reward = rewards[i];

 // Reward name must not be zero bytes and reward value must be non-zero
 if (rewardName == ZERO_BYTES || reward.rewardValue == 0) {
 revert KeepWhatsRaisedInvalidInput();
 }
 ...
 }
 ...
}

16​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-MED-01
Blocking CampaignInfoFactory.createCampaign calls via front-running #1

Id IMM-MED-01

Severity Medium

Category Bug

Status

Acknowledged​
​
Fix ready but not released in
fec67cfe084c26d4a08f4b0444ac08a9247a760e

Description

CampaignInfoFactory is meant to be the dedicated entrypoint of the CC Protocol for creating crowdfunding

campaigns across various platforms. However, the implementation of its factory method, createCampaign,

allows an attacker to actively block the creation of new CampaignInfo contracts, effectively bricking the

protocol until the attack is stopped. The attack is not economically expensive, as it requires only payments

for gas to be made without additional token or coin transfers.

CampaignInfoFactory.createCampaign takes an identifierHash parameter which it uses as a unique ID for

the campaign, besides the clone address itself, of course. This ID isn't concatenated/combined with any

other identifying information (e.g. msg.sender), which allows an attacker to grief the CampaignInfoFactory

contract by front-running valid calls to CampaignInfoFactory.createCampaign and creating campaigns using

the same identifierHash as specified in the valid calls.

createCampaign checks whether a campaign exists using the given identifier in the validation stage of the

method and reverts if a conflict is identified:

function createCampaign(
 address creator,
 bytes32 identifierHash,
 bytes32[] calldata selectedPlatformHash,
 bytes32[] calldata platformDataKey,
 bytes32[] calldata platformDataValue,
 CampaignData calldata campaignData

17​ Immunefi Audits​ Immunefi / CC Protocol

​

) external override {
 ...
 address cloneExists = identifierToCampaignInfo[identifierHash];
 if (cloneExists != address(0)) {
 revert CampaignInfoFactoryCampaignWithSameIdentifierExists(
 identifierHash,
 cloneExists
);
 }

Since there are no upfront costs for creating a campaign, a malicious counterparty can effectively block all

calls to createCampaign. Additionally, depending on how CampaignInfo contracts are linked to the

crowdfunding campaigns located on off-chain platforms, other user's crowdfunding campaigns might be

registered with the attacker as the owner: since the createCampaign call can be front-run, an attacker can

supply the same identifierHash used for identifying the campaign on off-chain platforms, but specify their

own address as the owner.

Recommendation

Use identifiers validated to be linked to a campaign creator, for example, by hashing the concatenation of

creator and identifierHash values. On top of this, security can be improved further by receiving and

validating a signature made by the creator for the hash of the concatenation of creator and identifierHash.

Receiving a signature of the identifierHash value itself would be insufficient as an attacker would be able

to sign it using their own key and supply their own address as the creator.

18​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-MED-02
Blocking KeepWhatsRaised pledge functions via front-running #4

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 1d6ad873f7ca30cd6eab33cfff39022508149dad

Description

The KeepWhatsRaised contract contains a critical design flaw in its pledge functions (pledgeWithoutAReward

and pledgeForAReward) that allows attackers to perform front-running attacks against specific campaigns.

Both pledge functions accept a pledgeId parameter that must be unique:

 /**
 * @notice Allows a backer to pledge for a reward.
 * @dev The first element of the `reward` array must be a reward tier and the other
elements can be either reward tiers or non-reward tiers.
 * The non-reward tiers cannot be pledged for without a reward.
 * @param pledgeId The unique identifier of the pledge.
 * @param backer The address of the backer making the pledge.
 * @param tip An optional tip can be added during the process.
 * @param reward An array of reward names.
 */
 function pledgeForAReward(
 bytes32 pledgeId,
 address backer,
 uint256 tip,
 bytes32[] calldata reward
)

If a pledgeId is already used, the transaction reverts:

19​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

if(s_processedPledges[pledgeId]){
 revert KeepWhatsRaisedPledgeAlreadyProcessed(pledgeId);
}
s_processedPledges[pledgeId] = true;

This ID isn't concatenated/combined with any other identifying information (e.g. msg.sender), which allows

an attacker to grief the KeepWhatsRaised contract by front-running valid calls to pledge functions using the

same pledgeId.

Attackers can monitor blockchain for pending pledge transactions, extract the pledgeId values, and

front-run them with zero-amount pledges using the same IDs. After this, the user's request with that

pledgeId will revert.

This allows attackers to effectively block all calls to pledgeWithoutAReward and pledgeForAReward.

Recommendation

Replace externally-provided pledge IDs with internally generated ones. It's sufficient to use msg.sender in

the pledgeId generation.

20​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-MED-03
AllOrNothing treasury ends up with locked funds if canceled after success condition

#8

Id IMM-MED-03

Severity Medium

Category Bug

Status

Acknowledged
​
Fix ready but not released in
ad31321321584bbdf81e39c5df94ce88c2e0a154

Description

For legal purposes and to protect the backers malicious or otherwise non-compliant campaign owners, the

platform admin is able to pause and cancel the treasury contracts used by campaigns on their platform.

Additionally, the owner themselves is able to cancel specific treasuries (e.g.

KeepWhatsRaised.cancelTreasury supports cancellation by both owner and platform admin), or the

campaign.

The global protocol admin is also able to cancel campaigns (CampaignInfo._cancelCampaign). Overall, the CC

Protocol implements a pretty advanced and layered pausing/cancelation scheme here, all for the sake of

the backers.

One of the core requirements for cancelation is that it must not block backer refunds, so that backers are

able to withdraw their pledged funds from a canceled campaign. See AllOrNothing.claimRefund, for

example: it is blocked when a treasury is paused (indicated a temporarily frozen state enabled to

investigate or verify the campaign), but does depend on the cancelation of the treasury:

function claimRefund(
 uint256 tokenId
)
 external
 currentTimeIsGreater(INFO.getLaunchTime())
 whenCampaignNotPaused // <-- checks only for campaign/treasury pause

21​ Immunefi Audits​ Immunefi / CC Protocol

​

 whenNotPaused
{
 if (block.timestamp >= INFO.getDeadline() && _checkSuccessCondition()) {
 revert AllOrNothingNotClaimable(tokenId);
 }
 ...
}

KeepWhatsRaised.claimRefund functions in a similar way, but additionally checks for cancellation to allow

refunds for a set time after cancellation. AllOrNothing, however, has a subtle issue in the claimRefund

method, which prevents refunds from succeeding if the campaign or treasury is canceled when the

success condition is passed: the very beginning of the claimRefund method listed above contains a check

that prevents refunds after the deadline and when _checkSuccessCondition is true (which happens when

enough funds are raised). Even if the treasury/campaign is canceled at this point, the refund won't work,

completely breaking the core requirement of cancelations mentioned earlier.

Furthermore, since the disburseFees and withdraw methods of AllOrNothing will be blocked, too (as they

should be, since cancelation means that no funds should be distributed to the campaign owner or

platform), there will be no way to unlock the funds (cancelation is a one-way process, it isn't possible to

"un-cancel" the treasury or campaign). They will remain frozen forever on the treasury contract.

An additional issue worth to be highlighted here is that the cancellation can occur between calls to

disburseFees and withdraw, which would leave the contract in a state which would make no sense even if

the issue with refunds isn't taken into account. Since fees have already been disbursed, some of the

pledged funds have been transferred. As such, if backers will attempt to refund their pledges, some of them

will not be successful due to insufficient funds being left in the treasury.

Recommendation

Cancelations must be allowed even after the campaign goal is met — this was confirmed with the CC

Protocol team during a meeting.

As such, the claimRefund of AllOrNothing must be adjusted to account for cancellations after the deadline

has passed and the goal has been reached. Additionally, cancellations must not be allowed to pass

between disburseFees and withdraw calls as they will lead to protocol insolvency: despite the

treasury/campaign being canceled, not all backers will be able to refund their pledges.

22​ Immunefi Audits​ Immunefi / CC Protocol

​

This might require re-organizing the disburseFees and withdraw methods into a single method which

calculates the fees and payouts and stores them in the contract state, for all the parties to be able to

withdraw through separate calls. This way, there'd be no way for a cancellation to occur in between these

two method calls.

23​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-MED-04
Gateway fee bypass #19

Id IMM-MED-04

Severity Medium

Category Bug

Status Fixed in 783fb90a05982c899ba0fdcd92d7d3ce975e2d14

Description

Backers can completely bypass gateway fees by calling pledgeForAReward() or pledgeWithoutAReward()

directly instead of using the intended setFeeAndPledge() function. Gateway fees are only applied when they

exist in the s_paymentGatewayFees mapping, which is not populated during direct pledge calls.

Gateway fees are calculated in _calculateNetAvailable() by looking up the fee amount using

getPaymentGatewayFee(pledgeId). However, if no fee was previously set for a pledgeId, this function returns

0, effectively bypassing all gateway fees.

Moreover, it's impossible to set a payment gateway fee later through setPaymentGatewayFee because the

fee will already be calculated in _calculateNetAvailable when executing

pledgeForAReward()/pledgeWithoutAReward().

function _calculateNetAvailable(bytes32 pledgeId, uint256 tokenId, uint256 pledgeAmount)
internal returns (uint256) {
 uint256 totalFee = 0;

 // ... other fee calculations

 //Payment Gateway Fee Calculation
 uint256 paymentGatewayFee = getPaymentGatewayFee(pledgeId); // Returns 0 if not set
 s_platformFee += paymentGatewayFee;
 totalFee += paymentGatewayFee;

 return pledgeAmount - totalFee;
}

24​ Immunefi Audits​ Immunefi / CC Protocol

​

Given that they always deduct money from the backer's wallet, this completely eliminates the purpose of

setFeeAndPledge. Because it's always more profitable for the backer to directly use

pledgeForAReward()/pledgeWithoutAReward().

Recommendation

We recommend reconsidering the logic related to gateway fees. Perhaps it's worth calculating payment

gateway fees globally or adding fee recalculation logic.

With both setFeeAndPledge and pledgeForAReward()/pledgeWithoutAReward(), the backer needs to do an

onchain approval. It's unclear why this logic exists if onchain transactions need to be done anyway. It would

make sense if the transferFrom came from msg.sender instead of the backer. Because then the payment

gatewayFee would be paid when the admin pays for the backer from their wallet

25​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-MED-05
configureTreasury leads to restrictions bypass #20

Id IMM-MED-05

Severity Medium

Category Bug

Status Fixed in 4015791a42ad401fcf65757f509cce342ae95c5b

Description

Platform admin can call configureTreasury, which overrides all company data including deadline and

goalAmount, without any checks on updated data.

 function configureTreasury(
 Config memory config,
 CampaignData memory campaignData,
 FeeKeys memory feeKeys
)
 external
 onlyPlatformAdmin(PLATFORM_HASH)
 whenCampaignNotPaused
 whenNotPaused
 whenCampaignNotCancelled
 whenNotCancelled
 {
 s_config = config;
 s_feeKeys = feeKeys;
 s_campaignData = campaignData;

 emit TreasuryConfigured(
 config,
 campaignData,
 feeKeys
);
 }

26​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

The problem is that this completely bypasses all logic with deadlineLimit in the claimFund function

uint256 deadlineLimit = getDeadline() + s_config.withdrawalDelay;

In fact, platform admin can at any moment set deadlines in the past and withdraw all money through

claimFund, bypassing existing restrictions.

Recommendation

Add checks inside configureTreasury based on block.timestamp for deadline. Also, in general, it's worth

considering moving away from an architecture where platform admin can change any сampaign.

27​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-LOW-01
GlobalParams.delistPlatform can break existing campaigns #2

Id IMM-LOW-01

Severity LOW

Category Bug

Status Acknowledged

Description

GlobalParams is a singleton configuration contract used across pretty much all CC Protocol contracts to

retrieve shared parameters controlled by the protocol admin. A part of its configuration defines the

crowdfunding platforms listed on the Protocol: the on-chain admin account designated for operating

treasuries on behalf of the platform, the platform fee, and more. Platforms are listed on the CC Protocol by

the protocol admin using the GlobalParams.enlistPlatform method.

Once a platform is listed, it can be chosen by campaign creators in CampaignInfoFactory.createCampaign,

and the platform admin is then able to create treasuries for the campaigns using TreasuryFactory.deploy.

However, platforms can also be delisted by the protocol admin through the GlobalParams.delistPlatform

method, which does not check whether there exist unfinished campaigns/treasuries using this platform:

function delistPlatform(
 bytes32 platformHash
) external onlyOwner platformIsListed(platformHash) {
 s_platformIsListed[platformHash] = false;
 s_platformAdminAddress[platformHash] = address(0);
 s_platformFeePercent[platformHash] = 0;
 s_numberOfListedPlatforms.decrement();
 emit PlatformDelisted(platformHash);
}

If a platform is delisted, be it intentionally or accidentally, the existing campaigns and their treasuries can

start malfunctioning, possibly locking funds pledged to them. For example, the AllOrNothing treasury's

28​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

TypeScript

​

disburseFees method, which calls into BaseTreasury.disburseFees, would revert on any call attempt, since

the calls to INFO.getPlatformAdminAddress would fail:

function disburseFees()
 public
 virtual
 override
 whenCampaignNotPaused
 whenCampaignNotCancelled
{
 if (!_checkSuccessCondition()) {
 revert TreasurySuccessConditionNotFulfilled();
 }
 ...
 TOKEN.safeTransfer(
 INFO.getPlatformAdminAddress(PLATFORM_HASH),
 platformShare
);
 ...
}

CampaignInfo.getPlatformAdminAddress just forwards the call to GlobalParams.getPlatformAdminAddress,

which would revert with GlobalParamsPlatformAdminNotSet:

function getPlatformAdminAddress(
 bytes32 platformHash
)
 external
 view
 override
 platformIsListed(platformHash)
 returns (address account)
{
 account = s_platformAdminAddress[platformHash];
 if (account == address(0)) {
 revert GlobalParamsPlatformAdminNotSet(platformHash);
 }
}

29​ Immunefi Audits​ Immunefi / CC Protocol

​

Recommendation

Implement a graceful delisting mechanism, which doesn't immediately cause any get calls to retrieve

platform information to start failing, but instead disallows creation of new campaigns and treasuries using

the specified platform (in CampaignInfoFactory.createCampaign and TreasuryFactory.deploy).

This goes well with the best practice of not making any breaking changes immediately and instead

introducing them with a lockup period after which the change goes live.

30​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-LOW-02
No control over expected fees during CampaignInfoFactory.createCampaign #3

Id IMM-LOW-02

Severity LOW

Category Bug

Status
Fixed in
f0ca7c769670d97ba8c86c23b4e935006e0bce00

Description

CampaignInfoFactory.createCampaign is meant to be used by ordinary users to create new crowdfunding

campaigns using the CC Protocol and various off-chain platforms.

An economic incentive for handling campaigns is made for the Protocol and the platforms listed on it in the

forms of fees paid out by the campaign treasuries once the treasury success condition is fulfilled. For

transparency, the percentage of these fees is locked in at creation time.

The protocol fee is saved as an immutable value using OpenZeppelin "Clones" in

CampaignInfoFactory.createCampaign:

function createCampaign(
 address creator,
 bytes32 identifierHash,
 bytes32[] calldata selectedPlatformHash,
 bytes32[] calldata platformDataKey,
 bytes32[] calldata platformDataValue,
 CampaignData calldata campaignData
) external override {
 ...
 bytes memory args = abi.encode(
 s_treasuryFactoryAddress,
 GLOBAL_PARAMS.getTokenAddress(),
 GLOBAL_PARAMS.getProtocolFeePercent(), // <-- Here!
 identifierHash
);
 address clone = Clones.cloneWithImmutableArgs(s_implementation, args);

31​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

And the platform fees are saved in CampaignInfo.initialize, which is called by

CampaignInfoFactory.createCampaign right after cloning:

function initialize(
 address creator,
 IGlobalParams globalParams,
 bytes32[] calldata selectedPlatformHash,
 bytes32[] calldata platformDataKey,
 bytes32[] calldata platformDataValue,
 CampaignData calldata campaignData
) external initializer {
 ...
 uint256 len = selectedPlatformHash.length;
 for (uint256 i = 0; i < len; ++i) {
 s_platformFeePercent[selectedPlatformHash[i]] = GLOBAL_PARAMS
 .getPlatformFeePercent(selectedPlatformHash[i]);
 s_isSelectedPlatform[selectedPlatformHash[i]] = true;
 }

In our perspective, there is a slight issue with this implementation: the fees are retrieved during execution

time without the ability to limit them or specify the expected fees, like one usually can in other protocols

(think about limiting slippage).

For correct and meaningful campaign creations, the user should be able to specify the expected fees in the

createCampaign call, or the documentation for it should directly state that, since fees are locked in at

creation, calls to createCampaign must be made through intermediate contracts which verify that the fee

hasn't changed from the user's expectation. Link to current doc: CampaignInfoFactory.createCampaign.

Recommendation

Add expectedProtocolFeePercent and expectedPlatformFeePercent parameters to the

CampaignInfoFactory.createCampaign method. Alternatively, describe this specific behaviour in the

documentation.

32​ Immunefi Audits​ Immunefi / CC Protocol

https://github.com/ccprotocol/ccprotocol-contracts-internal/blob/e44a2d34429de9ba8f5fc9a984ee600dada6289b/src/interfaces/ICampaignInfoFactory.sol#L35

TypeScript

​

IMM-LOW-03
Campaign owner can set arbitrary fees for KeepWhatsRaised #11

Id IMM-LOW-03

Severity LOW

Category Bug

Status Fixed in 9f0e5ab24503574bb96e3d3cf068f872e0604131

Description

The KeepWhatsRaised treasury utilizes a complex fee structure, with two separate flat fee values enacted

during withdrawals, multiple gross percentage-based fees enacted during pledges, and others.

The mentioned flat fees and gross percentage-based fees are configured through custom platform data

values set in the CampaignInfo contract linked to the treasury.

Platform data keys to be used for retrieving these fee values are controlled by the platform admin through

the KeepWhatsRaised.configureTreasury method:

function configureTreasury(
 Config memory config,
 CampaignData memory campaignData,
 FeeKeys memory feeKeys
)
 external
 onlyPlatformAdmin(PLATFORM_HASH)
 whenCampaignNotPaused
 whenNotPaused
 whenCampaignNotCancelled
 whenNotCancelled
{
 s_config = config;
 s_feeKeys = feeKeys; // <-- fee platform data keys set here
 s_campaignData = campaignData;

 emit TreasuryConfigured(

33​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

 config,
 campaignData,
 feeKeys
);
}

Keys set here are used throughout the contract in the following manner (example from withdraw):

function withdraw(
 uint256 amount
)
 public
 currentTimeIsLess(getDeadline() + s_config.withdrawalDelay)
 whenNotPaused
 whenNotCancelled
 withdrawalEnabled
{
 uint256 flatFee = uint256(INFO.getPlatformData(s_feeKeys.flatFeeKey));
 uint256 cumulativeFee = uint256(INFO.getPlatformData(s_feeKeys.cumulativeFlatFeeKey));
 ...
}

CampaignInfo.getPlatformData simply fetches these values from the contract storage, where they're put

during the campaign initialization (see CampaignInfo.initialize).

As it stands, the values of any platform data stored in the CampaignInfo contract is fully controlled by the

user who calls the initial campaign creation factory method, CampaignInfoFactory.createCampaign. This user

can well be the campaign owner themselves, since there is no access control imposed on campaign

creation. The campaign owner, or the campaign creator, can set arbitrary values for valid platform data keys,

and, as a consequence, arbitrary fee values for the KeepWhatsRaised treasury.

Since the treasury itself is created through the TreasuryFactory.deploy method by the platform admin at a

later stage, they are able to verify that the appropriate fee values have been set in the CampaignInfo

contract.

34​ Immunefi Audits​ Immunefi / CC Protocol

​

For this reason, we have set the vulnerability's severity to low, however we still consider it to be a security

issue which can lead to the erosion of trust platforms have in the protocol, since they will have to perform

thorough manual validation instead of controlling the fees themselves.

Recommendation

We recommend configuring fees directly through the KeepWhatsRaised treasury, which is logically owned

and managed by the admin of the platform to which the treasury is linked. This makes sense, as different

platforms might register the treasury, and want to set different fee values. So called "payment gateway"

fees are already configured this way. The configureTreasury method configures the platform data keys to

be used for fees, so it can be repurposed to configure the fees directly instead.

35​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-LOW-04
Refunds can drop the AllOrNothing treasury below the goal right before the

deadline #13

Id IMM-LOW-04

Severity LOW

Category Bug

Status Acknowledged

Description

The AllOrNothing registry implements a pledge collection treasury which functions in a manner very close

to classic Kickstarter campaigns: either the campaign reaches its funding goal and the funds are unlocked

for the owner to withdraw, or the campaign reaches the deadline (or is canceled) without reaching its

funding goal, in which case backers can refund their pledges.

Additionally, refunds are also available during the whole duration of the campaign, allowing it to operate

smoothly without "freezing" the backer's pledges until the very end. Kickstarter provides similar

functionality, but disallows pledge refunds in the last 24 hours of the campaign if they would drop the

campaign below the goal (see the following article from Kickstarter: Can-I-cancel-a-pledge).

This provides an additional level of financial stability to campaigns, especially when the amount of funds

collected is floating near the campaign goal. CC Protocol's AllOrNothing treasury does not implement any

similar time locking mechanisms, allowing refunds right up until the deadline:

function claimRefund(
 uint256 tokenId
)
 external
 currentTimeIsGreater(INFO.getLaunchTime())
 whenCampaignNotPaused
 whenNotPaused
{
 if (block.timestamp >= INFO.getDeadline() && _checkSuccessCondition()) {
 revert AllOrNothingNotClaimable(tokenId);
 }

36​ Immunefi Audits​ Immunefi / CC Protocol

https://help.kickstarter.com/hc/en-us/articles/115005133013-Can-I-cancel-a-pledge

​

 ...
}

This is not a security issue which would result in the protocol functioning in an exploitable way as it is, but

implementing this functionality can make the fund collection process work in a more expected and stable

manner.

Recommendation

Implement additional checks in AllOrNothing.claimRefund which would disallow refunds when a locking

period before the deadline is reached, if the requested refunds would drop the campaign below the goal.

Since this locking period might differ in duration between platforms, it can be added as a configuration

option to the AllOrNothing treasury itself, controllable by the platform admin below campaign launch.

37​ Immunefi Audits​ Immunefi / CC Protocol

​

IMM-LOW-05
TreasuryFactory.deploy should check that infoAddress is registered in

CampaignInfoFactory.isValidCampaignInfo #17

Id IMM-LOW-05

Severity LOW

Category Bug

Status

Acknowledged

Fix ready but not released in
3e89545b649f45dd659eaeb14c1343ea6ab547a7

Description

TreasuryFactory is one of the core contracts of the CC Protocol, meant to be used as the single trusted

way of creating treasuries for campaigns. In fact, CampaignInfo._setPlatformInfo validates that the caller is

the singleton TreasuryFactory instance of the protocol.

TreasuryFactory.deploy, the actual factory method of the contract, takes a infoAddress parameter, which is

supposed to be the address of the CampaignInfo contract for which the treasury is being deployed.

However, deploy does not verify this address to be a valid CampaignInfo contract created by the

CampaignInfoFactory counterpart. As a result, a platform admin might be tricked, or might accidentally

deploy a treasury for a malicious or otherwise non-standard CampaignInfo contract, which would put the

funds of backers using the treasury at risk.

We are not sure how the platform admins' interaction with TreasuryFactory will be implemented, but

consider this issue to be worthwhile to fix in order to mitigate the possibility of problems arising from it.

Recommendation

CampaignInfoFactory contract stores a public mapping isValidCampaignInfo, in which the keys equal to

addresses of CampaignInfo contracts created through CampaignInfoFactory.createCampaign are set to true.

We propose validating the infoAddress parameter using this mapping.

38​ Immunefi Audits​ Immunefi / CC Protocol

​

IMM-LOW-06
Inconsistent integration of multi-platform campaigns #21

Id IMM-LOW-06

Severity LOW

Category Bug

Status Acknowledged

Description

CC Protocol considers multi-platform campaigns as one of the unique interoperability features. It is

currently not one of the main features, however it is planned to be used in the long term. There are currently

two separate treasury implementations, which can be used to host a campaign on different platforms with

different treasury kinds: the AllOrNothing treasury and the KeepWhatsRaised treasury.

While AllOrNothing relies on the data configured by the owner through the main CampaignInfo contract,

KeepWhatsRaised stores the campaign launch time, goal, and deadline separately. This means that,

potentially, the deadlines for pledges and other processes might differ for these two treasuries of the same

campaign. If the deadline set in CampaignInfo is earlier than the deadline set in KeepWhatsRaised, then

pledges to the AllOrNothing treasury would be disallowed, but would be allowed to continue to

KeepWhatsRaised.

The presented case is obviously not an issue, however, besides pledges, the refund period of

KeepWhatsRaised can also intersect with the deadline of CampaignInfo used by AllOrNothing. In such case,

an AllOrNothing treasury which passes the success condition INFO.getTotalRaisedAmount() >=

INFO.getGoalAmount() (_checkSuccessCondition) at one point in time, might not pass this condition later, if a

backer decides to withdraw funds from the KeepWhatsRaised treasury, which would be accounted in the

CampaignInfo.getTotalRaisedAmount call.

Thus, when campaigns are hosted on multiple platforms, if configured improperly, their different stages and

mechanics can conflict with one another, and lead to cases where one of the treasuries (e.g. AllOrNothing)

is first considered to be successful, at which point disburseFees occurs, and then changes to and

unsuccessful state, which leads to backers being able to call claimRefund, even though their funds have

already been taxed and perhaps even withdrawn. This specific case is not a severely critical issue, since the

AllOrNothing‘s treasury's mechanisms intentionally allow pledges/withdrawals during the whole duration of

the campaign, so the campaign is able to change its success at the last minute anyway. We still consider

39​ Immunefi Audits​ Immunefi / CC Protocol

​

the issue overall to be worth noting, however, and multi-platform treasury integrations should be

architecturally redesigned to avoid such issues in future development.

Recommendation

Consider controlling the shared parameters of all treasuries (campaign launch time, goal, deadline) through

the shared CampaignInfo contract, instead of storing them separately for different platforms' treasuries.

Consider reworking the treasury integration to avoid treasuries' success conditions relying on one another.

40​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-INSIGHT-01
Incorrect description of the claimFund function #6

Id IMM-INSIGHT-01

Severity INSIGHT

Category Informational

Status Fixed in 73160f32df243626fb54c168afcd2176a46fe205

Description

The claimFund function in the KeepWhatsRaised contract is described incorrectly. The description states:

“Allows a campaign owner or authorized user to claim remaining campaign funds.”

While in reality, it can only be accessed by the platform admin.

 /**
 * @dev Allows a campaign owner or authorized user to claim remaining campaign funds.
 *
 * Requirements:
 * - Claim period must have started and funds must be available.
 * - Cannot be previously claimed.
 */
 function claimFund()
 external
 onlyPlatformAdmin(PLATFORM_HASH)
 whenCampaignNotPaused
 whenNotPaused
 {

Recommendation

Fix documentation of function

41​ Immunefi Audits​ Immunefi / CC Protocol

​

IMM-INSIGHT-02
CampaignInfoFactory.createCampaign platformDataKey validation optimization #9

Id IMM-INSIGHT-02

Severity INSIGHT

Category Gas Optimization

Status Fixed in 7f3115f4beebb9afdf08a5e7bbf390888ec005e9

Description

CampaignInfoFactory.createCampaign validates nearly all arguments prior to doing any gas-costly actions

such as CampaignInfo contract cloning and its initialization.

However, platformDataKey values are validated only during the CampaignInfo.initialize call, which occurs

at a stage near the end of the createCampaign flow. Invalid platformDataKey values detected would revert

the transaction, which at their current point of validation would've spent quite a lot of gas.

Of course, in the context of the Celo blockchain, on which the CC Protocol will be operating, this issue isn't

as noticeable as it would be on Ethereum, for example, thanks to the lower fees. However, we still consider

such optimizations important for the overall sustainability and quality of the contracts.

Recommendation

Move platformDataKey parameter validation to an earlier stage of the createCampaign flow. For example, to

the beginning of the createCampaign method itself, where all other validation takes place.

42​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-INSIGHT-03
CampaignInfo lacks way to provide new platform data during

updateSelectedPlatform #10

Id IMM-INSIGHT-03

Severity INSIGHT

Category Informational

Status Fixed in cf02e548dc5019be2335eb55719902c3d9e4fc0b

Description

CampaignInfo contracts are used by the CC Protocol as the main source of information about ongoing

crowdfunding campaigns: they hold the campaign launch time, deadline, goal, and other parameters. In

particular, CampaignInfo stores platform-specific data values, which can be used by other contracts in the

system when working with campaigns in the context of a platform. The KeepWhatsRaised registry, for

example, uses platform data values stored in the campaign as a source of fee information during

withdrawals (see KeepWhatsRaised.withdraw).

Currently, the CampaignInfo contract allows setting up these data values during initialization through the

CampaignInfoFactory.createCampaign method, which passes them on to CampaignInfo.initialize:

function initialize(
 address creator,
 IGlobalParams globalParams,
 bytes32[] calldata selectedPlatformHash,
 bytes32[] calldata platformDataKey,
 bytes32[] calldata platformDataValue,
 CampaignData calldata campaignData
) external initializer {
 ...
 for (uint256 i = 0; i < len; ++i) {
 isValid = GLOBAL_PARAMS.checkIfPlatformDataKeyValid(
 platformDataKey[i]
);
 if (!isValid) {

43​ Immunefi Audits​ Immunefi / CC Protocol

​

 revert CampaignInfoInvalidInput();
 }
 s_platformData[platformDataKey[i]] = platformDataValue[i];
 }
}

When platforms are chosen during campaign creation, there is no problem with providing the platform data

they require for correct operation of treasuries and other components. However, platforms can also be

selected later using the CampaignInfo.updateSelectedPlatform method, which fails to provide a way to set

new platform data values. As such, if a new platform is selected, and it turns out to require platform values

to be set for treasuries to work, the user's campaign just will not function correctly with that platform. If the

platform admin does their due diligence to validate the campaign configuration, they might notice the lack

of necessary values and reject treasury setup for the campaign, but they might miss this issue and create

the treasury anyway, in which case it might generally fail to function properly due to inconsistencies with

the platform data.

Furthermore, quoting the CC Protocol team's reply to our questions on this topic, "Platform data can be

completely skipped during campaign creation". As such, there must be a way for a user to set or update it

later for their campaign to be correctly listed on crowdfunding platforms.

Notice that the audit report by PeckShield from May 20th, 2025 also mentioned a similar issue with

CampaignInfo.updateSelectedPlatform: it failed to set the newly chosen platform fee, which would also lead

to an inconsistent state of the CampaignInfo contract.

Recommendation

Allow configuring platform data during updateSelectedPlatform method. This will allow a user to set up the

necessary data values when they choose a new platform, and to reconfigure existing values, if needed.

44​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-INSIGHT-04
platformDataValue values lack validation in CampaignInfoFactory.createCampaign

#12

Id IMM-INSIGHT-04

Severity INSIGHT

Category Informational

Status Fixed in ed555d20638ec5ce6f5ae087928231987ff71bdc

Description

[CampaignInfoFactory.createCampaign] enforces pretty decent validation on all parameters passed to it, and

it should, since the created campaign will be initialized using them. Platform-specific data values should be

validated particularly thoroughly, as there is currently no way to modify them after campaign creation.

Platform data keys are already properly validated during CampaignInfo.initialize, but the values

themselves lack any sort of validation. In our opinion, one check that should be enforced is that the values

are not zero, since the platform data getter, CampaignInfo.getPlatformData, uses zero to check if the

platform data value is present:

function getPlatformData(
 bytes32 platformDataKey
) external view override returns (bytes32) {
 bytes32 platformDataValue = s_platformData[platformDataKey];
 if (platformDataValue == bytes32(0)) {
 revert CampaignInfoInvalidInput();
 }
 return platformDataValue;
}

Recommendation

Validate that platformDataValue values are not zero in CampaignInfo.initialize or

CampaignInfoFactory.createCampaign, alongside other checks.

45​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-INSIGHT-05
Validate creator to be non-zero during createCampaign #16

Id IMM-INSIGHT-05

Severity INSIGHT

Category Informational

Status Fixed in aa2f69d0d3584f5c7fea9752251a85ed36ba69bd

Description

The CC Protocol contracts implement non-zero address checks pretty much everywhere where addresses

are passed as parameters (GlobalParams.updateProtocolAdminAddress, GlobalParams.enlistPlatform, etc).

CampaignInfo.transferOwnership also performs this validation, albeit indirectly: the OpenZeppelin Ownable

contract checks that the new owner is not zero.

function transferOwnership(address newOwner) public virtual onlyOwner {
 if (newOwner == address(0)) {
 revert OwnableInvalidOwner(address(0));
 }
 _transferOwnership(newOwner);
}

However, the factory method CampaignInfoFactory.createCampaign does not validate that the initial creator

address is non-zero, and passes it as is to CampaignInfo.initialize. CampaignInfo.initialize, in turn, calls

the _internal_ _transferOwnershipmethod with thecreator argument, which also does not perform this

check.

As a result, CampaignInfo.transferOwnership is inconsistent with CampaignInfoFactory.createCampaign,

which can create a campaign and set its owner to the zero address, pretty much burning the campaign.

Recommendation

Validate the creator parameter in CampaignInfoFactory.createCampaign to be a non-zero address.

46​ Immunefi Audits​ Immunefi / CC Protocol

TypeScript

​

IMM-INSIGHT-06
Inaccurate doc for finance-related function _calculateNetAvailable #18

Id IMM-INSIGHT-06

Severity INSIGHT

Category Informational

Status Fixed in e8ccf17c96143d0e8c401d27c8d61175b2782419

Description

Documentation states that the KeepWhatsRaised. _calculateNetAvailable method calculates and accounts

for the "Columbian creator tax", when applicable. In fact, it does no such thing, but it does account for the

"payment gateway fee" which the documentation fails to mention.

/**
 * @dev Calculates the net available amount after deducting platform fees and applicable
taxes
 * @param pledgeId The unique identifier of the pledge.
 * @param tokenId The ID of the token representing the pledge.
 * @param pledgeAmount The total pledge amount before any deductions
 * @return The net available amount after all fees and taxes are deducted
 *
 * @notice This function performs the following calculations:
 * 1. Applies all gross percentage fees based on platform configuration
 * 2. Calculates Colombian creator tax if applicable (0.4% effective rate)
 * 3. Updates the total platform fee accumulator
 */
function _calculateNetAvailable(bytes32 pledgeId, uint256 tokenId, uint256 pledgeAmount)
internal returns (uint256) {
 uint256 totalFee = 0;

 // Gross Percentage Fee Calculation
 uint256 len = s_feeKeys.grossPercentageFeeKeys.length;
 for (uint256 i = 0; i < len; i++) {
 uint256 fee = (pledgeAmount *
uint256(INFO.getPlatformData(s_feeKeys.grossPercentageFeeKeys[i])))
 / PERCENT_DIVIDER;

47​ Immunefi Audits​ Immunefi / CC Protocol

​

 s_platformFee += fee;
 totalFee += fee;
 }

 //Payment Gateway Fee Calculation
 uint256 paymentGatewayFee = getPaymentGatewayFee(pledgeId);
 s_platformFee += paymentGatewayFee;
 totalFee += paymentGatewayFee;

 s_tokenToPaymentFee[tokenId] = totalFee;

 return pledgeAmount - totalFee;
}

We think all documentation related to finances and the accounting of various fees and taxes needs to be

accurate to avoid confusing any potential users who would see this documentation.

Recommendation

Fix the doc comment to properly describe the calculations made in the _calculateNetAvailable method.

48​ Immunefi Audits​ Immunefi / CC Protocol

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	FINDINGS
	IMM-CRIT-01
	IMM-HIGH-01
	IMM-HIGH-02
	
	
	IMM-HIGH-03
	IMM-MED-01
	IMM-MED-02
	
	
	
	IMM-MED-03
	IMM-MED-04
	
	IMM-MED-05
	
	IMM-LOW-01
	IMM-LOW-02
	
	
	IMM-LOW-03
	
	IMM-LOW-04
	
	
	
	IMM-LOW-05
	
	IMM-LOW-06
	
	IMM-INSIGHT-01
	
	IMM-INSIGHT-02
	
	IMM-INSIGHT-03
	
	IMM-INSIGHT-04
	
	IMM-INSIGHT-05
	
	IMM-INSIGHT-06
	

