

DATE​ June 11, 2025

AUDITOR​ DrasticWaterMelon and Panda,
Security Researchers

REPORT BY​ gmhacker, Immunefi Head of
Security

01​ About Immunefi
02​ Terminology
03​ Executive Summary
04​ Findings

​

ABOUT IMMUNEFI​ 3
TERMINOLOGY​ 4
EXECUTIVE SUMMARY​ 5
FINDINGS​ 6

IMM-CRIT-01​ 6

IMM-HIGH-01​ 8

IMM-HIGH-02​ 10

IMM-MED-01​ 12

IMM-LOW-01​ 15

IMM-LOW-02​ 16

IMM-INSIGHT-01​ 17

IMM-INSIGHT-02​ 19

IMM-INSIGHT-03​ 20

IMM-INSIGHT-04​ 21

IMM-INSIGHT-05​ 22

IMM-INSIGHT-06​ 24

2​ Immunefi Audits​ Immunefi / Plaza Finance

​

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than

$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing

over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a

single command center to more than 300 projects — including Sky (formerly MakerDAO), Optimism,

Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,

AAVE, ZKsync, Morpho, Ethena, USDT0, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,

Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi’s market leading products

and community of elite security researchers with a curated set of the very best security products and

technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus

Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi’s proprietary vulnerabilities dataset — the largest and most

comprehensive in web3, ensuring that security leaders and teams have the best possible tools for

identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3​ Immunefi Audits​ Immunefi / Plaza Finance

​

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our

findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

-​ Likelihood represents the likelihood of a finding to be triggered or exploited in practice

-​ Impact specifies the technical and business-related consequences of a finding

-​ Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are

derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

LIKELIHOOD IMPACT

 HIGH MEDIUM LOW

CRITICAL Critical Critical High

HIGH High High Medium

MEDIUM Medium Medium Low

LOW Low

NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as

critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the

severity correlates with the associated risk. However, every finding's risk should always be closely checked,

regardless of severity.

4​ Immunefi Audits​ Immunefi / Plaza Finance

​

EXECUTIVE SUMMARY

Over the course of 5 days in total, Plaza Finance engaged with Immunefi to review the cross-chain LP

distributor contracts. In this period of time a total of 12 issues were identified.

SUMMARY

Name Plaza Finance

Repository
https://github.com/Convexity-Research/plaza-evm/tree/80e5
3319a7a4862f823d420e61e40dce36e03808

Type of Project Defi Derivatives

Audit Timeline May 16th - May 22nd

Fix Period June 10th

ISSUES FOUND

Severity Count Fixed Acknowledged

Critical 1 1 0

High 2 2 0

Medium 1 1 0

Low 2 2 0

Insights 6 6 0

CATEGORY BREAKDOWN

Bug 6

Gas Optimization 0

Informational 6

5​ Immunefi Audits​ Immunefi / Plaza Finance

​

FINDINGS

IMM-CRIT-01
Double-Claim via Cross-Chain Transfers

Id IMM-CRIT-01

Severity Critical

Category Bug

Status
Fixed in
dfea08d31841e63858d129628be000d7cd24be67

Description

A user can potentially claim rewards on a chain, transfer their tokens to a different chain, and claim again

on the remote chain. This is possible if the system does not globally track which tokens have already been

claimed for a given period across all chains.

Impact:

●​ Dishonest users can receive more than their fair share of rewards.

●​ The system can be drained of USDC.

●​ Honest users may be left with nothing to claim.

Root Cause:

●​ Claims are tracked per chain, not globally.

●​ There is no mechanism to prevent a token/account from claiming on multiple chains for the same

period.

●​ Transactions are not atomic and guaranteed to be executed in order.

Recommendation

Transfer tokens with the period information

By transferring tokens with the period information, when the tokens arrive on the remote chain, make sure

the period matches.

6​ Immunefi Audits​ Immunefi / Plaza Finance

​

Disable transfers between chains during the period increase

By disabling transfers between chains during the USDC distribution period, it will prevent users from

moving tokens after claiming.

7​ Immunefi Audits​ Immunefi / Plaza Finance

​

IMM-HIGH-01
Transfers between remote chains will cause BondBaseOftAdapter.remoteBalance to

track incorrect data

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in 92ebdf771dad9a7ada8b76242d1c0006f7a5fbca

Description

BondBaseOftAdapter is used to track the amount of bondETH bridged to remote chains via the

remoteBalance (link here) mapping. When a cross chain transfer between Base and a remote chain occurs,

such mapping is updated accordingly to correctly track the amount of bondETH currently transferred to the

remote chain.

When a cross chain transfer between two remote chains occurs, the remoteBalance mapping will not be

updated despite both chains' total amounts of bondETH having changed.

Impact

Having remoteBalance deviate from correctly representing the amount of bondETH held in remote chains will

cause the following issues:

1.​ During a call to BondBaseOftAdapter.increasePeriodForRemote, the snapshotBalance mapping is

written the value held remoteBalance for a given remote chain id. This will propagate the error to

CrossChainController._getUsdcAmountForChain which determines the amount of USDC to be sent to

a remote chain, ultimately leading to an incorrect amount of USDC being transferred to remote

chains.

2.​ When bridging bondETH back to Base, BondBaseOftAdapter._credit is executed as part of the

incoming LayerZero processing flow. Such method decreases remoteBalance by the bridged amount

and then mints such amount to the cross chain transfer recipient: if remoteBalance tracks a lower

amount than the actual amount of bondETH bridged to a given remote chain. In this case, it is possible

for transfers from said chain to Base to be correctly initiated on the remote chain, but fail because of

an overflow when being processed on Base, leading to stuck bondETH tokens for users.

8​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L32

​

Recommendation

Not sure if its possible to frontrun on MIDL network, but as its EVM based network, there is a possibility so I

would Modify the swapCollateral to accept a user-provided minAmountOut parameter instead of calculating

it on-chain.

Two possible fixes for the highlighted issue were identified:

1.​ Implement a hub-and-spoke architecture via LayerZero peer permissions: allowing Base to interact

with every remote chain, but constraining remote chains to interact solely with Base will disallow

remote-to-remote transfers, removing the root cause of the issue altogether.

2.​ Implement additional functionality within BondRemoteOftAdapter._credit and/or

BondRemoteOftAdapter._debit to send a LayerZero cross chain message to Base's

BondBaseOftAdapter to have it update the remoteBalance mapping accordingly.

9​ Immunefi Audits​ Immunefi / Plaza Finance

​

IMM-HIGH-02
Cross-Chain USDC Distribution Imbalance Issue

Id IMM-HIGH-02

Severity High

Category Bug

Status Fixed in dfea08d31841e63858d129628be000d7cd24be67

Description

Issue:

The current cross-chain distribution mechanism for USDC and shares is susceptible to imbalances due to

the timing of the snapshot and the actual USDC transfer. The process is as follows:​

1.​ Snapshot: The base chain takes a snapshot of balances for each remote chain.

2.​ USDC Transfer: USDC is sent to each remote chain based on the snapshot.

3.​ Remote Distribution: Remote distributors receive USDC and are expected to distribute it according

to the snapshot.

4.​ Shares per Token Update: The shares per token value is sent to all remote chains.​

Problem:

If tokens are moved between chains between the snapshot and the USDC transfer, the actual balances on

remote chains may not match the snapshot. This can result in:

Some remote distributors having insufficient USDC to fulfill claims (causing claim failures).

Others having excess USDC (which may be stuck or misallocated).

This is a classic race condition between the snapshot and the actual transfer, leading to cross-chain state

divergence and potential denial of service for users on some chains.

Reference:

See RemoteDistributor.sol#L117-L119 for the claim logic that can fail if the USDC balance is insufficient.

Recommendation

Below are several possible mitigations:

10​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteDistributor.sol#L117-L119

​

●​ Implement a Rebalancing Mechanism​
Introduce a function/mechanism to rebalance USDC across remote distributors after the initial

distribution.

●​ Lock Transfers During Distribution​
Consider pausing or restricting token transfers between the snapshot and the completion of USDC

distribution to remote chains. This can be done by:

○​ Using the Pausable mechanism to temporarily pause transfers.

○​ Only allowing transfers after all remote chains have confirmed receipt of USDC.

●​ Pull USDC from base on claim​
Instead of transferring USDC to remote chains, pull USDC from the base chain on claim. This way,

the USDC is always there when needed.

This is a simpler mechanism to implement and does not require any additional state or mechanisms.

It is not as gas efficient as transferring USDC once and having it there when needed, but it is more secure.

11​ Immunefi Audits​ Immunefi / Plaza Finance

TypeScript

​

IMM-MED-01
CCIP messages will fail to be sent correctly

Id IMM-MED-01

Severity Medium

Category Bug

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

CrossChainController.sendUsdcToRemoteDistributors may be called to send USDC to remote chains via

CCIP.

The method uses the _buildCCIPMessage internal method to construct the CCIP message to be sent from

Base to any EVM remote chain: every message is built using feeToken: address(0), which may be used to

signal to CCIP's router contract that the user intends to pay the necessary fees in the chain's native asset.

Because CrossChainController.sendUsdcToRemoteDistributors fails to send any native ETH when calling

ccipRouter.ccipSend, sending CCIP messages will always fail.

Proof of Concept

The following PoC may be added to a test/CrossChainController.t.sol file and executed via forge t --mc

Audit:

pragma solidity ^0.8.26;

import {Client, IRouterClient} from "../../src/cross-chain/CrossChainController.sol";
import {UUPSUpgradeable} from
"@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

import "forge-std/Test.sol";

interface IApprove {
 function approve(address, uint) external;
}

contract Audit is Test {
 address usdc;

12​ Immunefi Audits​ Immunefi / Plaza Finance

​

 address router;
 address user;

 function setUp() external {
 vm.createSelectFork(
 getChain(0x2105).rpcUrl, // fork base
 30516567
);

 usdc = 0x833589fCD6eDb6E08f4c7C32D4f71b54bdA02913;
 router = 0x881e3A65B4d4a04dD529061dd0071cf975F58bCD;
 user = makeAddr("user");

 // Give usdc allowance
 deal(usdc, user, 1_000_000);
 vm.prank(user); IApprove(usdc).approve(router, 1_000_000);
 }

 function test_sendCCIP_fails() external {
 uint64 ethID = 5009297550715157269; // ETH ccip destination chain selector

 // Build CCIP message
 Client.EVMTokenAmount[] memory amounts = new Client.EVMTokenAmount[](1);
 amounts[0] = Client.EVMTokenAmount({token: usdc, amount: 1_000_000});

 Client.EVM2AnyMessage memory message = Client.EVM2AnyMessage({
 receiver: abi.encode(user),
 data: bytes(""),
 tokenAmounts: amounts,
 extraArgs: "",
 feeToken: address(0)
 });

 // Fetch fee
 uint256 fee = IRouterClient(router).getFee(
 ethID,
 message
);
 assertGt(fee, 0, "!fee");

 startHoax(user); // deal + startPrank

 // CCIP msg send fails if no fee is provided
 vm.expectRevert("InsufficientFeeTokenAmount()");
 IRouterClient(router).ccipSend(
 ethID,
 message
);

 // CCIP msg is successfully executed
 IRouterClient(router).ccipSend{value: fee}(
 ethID,
 message
);
 }
}

13​ Immunefi Audits​ Immunefi / Plaza Finance

​

Recommendation

Execute ccipRouter.ccipSend{value: fees}(..) in order to forward the correct amount of ETH to cover

fees.

14​ Immunefi Audits​ Immunefi / Plaza Finance

​

IMM-LOW-01
DistributorAdapter._isPeriodFinalized considers future periods as finalized

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

DistributorAdapter._isPeriodFinalized is used by the contract to determine whether a given period has

been finalized or not, and thus whether rewards may be claimed for such period.

The method's current implementation only verifies that period == lastPeriod &&

Auction(pool.auctions(lastPeriod)).state() == Auction.State.BIDDING) evaluates to false. Hence, for

any period such that period != lastPeriod, where lastPeriod = _currentPeriod() - 1, the condition will

evaluate to false and the method will be considered as finalized.

Recommendation

Modify the DistributorAdapter.sol#L42 condition to check period >= lastPeriod, allowing only periods

strictly smaller than lastPeriod.

15​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/DistributorAdapter.sol#L42

​

IMM-LOW-02
RemoteRoleController uses non-upgradeable dependencies

Id IMM-LOW-02

Severity Low

Category Bug

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

RemoteRoleController inherits OpenZeppelin's UUPSUpgradeable contract, making it able to hold the logic

for upgrading an ERC-1967 proxy when it is used as its implementation.

Because this method is intended to be used as the implementation for a proxy contract, it should utilize the

upgradeable versions of OpenZeppelin's library contracts, which use custom storage locations in order to

ensure that future implementation upgrades do not change the implementation's storage layout, which

would lead to corrupting the proxy's storage.

Currently, RemoteRoleController inherits the non-upgradeable AccessControl and Pausable contracts.

Recommendation

Use AccessControlUpgradeable and PausableUpgradeable instead of AccessControl and Pausable.

16​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteRoleController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v5.0/contracts/proxy/utils/UUPSUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/6b9adf75b0048bfd320d9ad102240514e0f12735/contracts/access/AccessControlUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/6b9adf75b0048bfd320d9ad102240514e0f12735/contracts/utils/PausableUpgradeable.sol

TypeScript

TypeScript

TypeScript

​

IMM-INSIGHT-01
Unused imports

Id IMM-INSIGHT-01

Severity INSIGHT

Category Informational

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

The following imports aren't used in the respective contracts:

File: src/cross-chain/BondBaseOftAdapter.sol

13: import {EnforcedOptionParam} from
"@layerzerolabs/oapp-evm/contracts/oapp/libs/OAppOptionsType3.sol";

14: import {IOAppCore} from
"@layerzerolabs/oapp-evm/contracts/oapp/interfaces/IOAppCore.sol";

src/cross-chain/BondBaseOftAdapter.sol#L13, src/cross-chain/BondBaseOftAdapter.sol#L14

File: src/cross-chain/BondRemoteOftAdapter.sol

10: import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

12: import {OFTComposeMsgCodec} from
"@layerzerolabs/oft-evm/contracts/libs/OFTComposeMsgCodec.sol";

src/cross-chain/BondRemoteOftAdapter.sol#L10, src/cross-chain/BondRemoteOftAdapter.sol#L12

File: src/cross-chain/CrossChainController.sol

17​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L13
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L14
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondRemoteOftAdapter.sol#L10
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondRemoteOftAdapter.sol#L12

TypeScript

​

13: import {EnforcedOptionParam} from
"@layerzerolabs/oapp-evm/contracts/oapp/libs/OAppOptionsType3.sol";

src/cross-chain/CrossChainController.sol#L13

File: src/cross-chain/RemoteDistributor.sol

16: import {IOAppCore} from
"@layerzerolabs/oapp-evm/contracts/oapp/interfaces/IOAppCore.sol";

20: import {IRouterClient} from
"@chainlink/contracts/src/v0.8/ccip/interfaces/IRouterClient.sol";

src/cross-chain/RemoteDistributor.sol#L16, src/cross-chain/RemoteDistributor.sol#L20

Recommendation

Remove unused imports.

18​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/CrossChainController.sol#L13
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteDistributor.sol#L16
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteDistributor.sol#L20

​

IMM-INSIGHT-02
DistributorAdapter doesn't disable initializers

Id IMM-INSIGHT-02

Severity INSIGHT

Category Informational

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

DistributorAdapter does not disable initializers during deployment, leaving the contract's implementation

open for initialization.

Recommendation

Add _disableInitializers() to the contract's constructor.

19​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/DistributorAdapter.sol

​

IMM-INSIGHT-03
DistributorAdapterCore.claim should use MerkleProof.verifyCalldata

Id IMM-INSIGHT-03

Severity INSIGHT

Category Informational

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

OpenZeppelin's MerkleProof library offers methods to validate a merkle proof located in memory or in

calldata:

●​ MerkleProof.verify

●​ MerkleProof.verifyCalldata

Recommendation

DistributorAdapterCore.claim may use the calldata version to avoid copying the proof from calldata to

memory, reducing the method's gas consumption.

20​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol#L45-L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol#L110-L112
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/DistributorAdapterCore.sol#L99-L117

TypeScript

​

IMM-INSIGHT-04
Unused modifier definition

Id IMM-INSIGHT-04

Severity INSIGHT

Category Informational

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

The following modifier are never used, consider removing them.

File: src/cross-chain/BondBaseOftAdapter.sol

127: modifier onlyPoolFactory() {
128: if (msg.sender != address(BondToken(address(innerToken)).poolFactory())) revert
OnlyPoolFactory();
129: _;
130: }

BondBaseOftAdapter.sol#L127

Recommendation

Remove the unused modifier and the error

21​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L127
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L36

TypeScript

TypeScript

TypeScript

​

IMM-INSIGHT-05
Pausable contracts not using modifiers

Id IMM-INSIGHT-05

Severity INSIGHT

Category Informational

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

These contracts import a pausable library, but there isn't any use of a pausable modifier.

File: src/cross-chain/BondBaseOftAdapter.sol

19: contract BondBaseOftAdapter is
20: Initializable,
21: UUPSUpgradeable,
22: OwnableUpgradeable,
23: PausableUpgradeable

BondBaseOftAdapter.sol#L19

File: src/cross-chain/CrossChainController.sol

17: contract CrossChainController is Initializable, UUPSUpgradeable, PausableUpgradeable {

CrossChainController.sol#L17

File: src/cross-chain/LeverageBaseOftAdapter.sol

22​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L19
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/CrossChainController.sol#L17

TypeScript

​

12: contract LeverageBaseOftAdapter is
13: Initializable,
14: UUPSUpgradeable,
15: OwnableUpgradeable,
16: PausableUpgradeable,

LeverageBaseOftAdapter.sol#L12

File: src/cross-chain/RemoteRoleController.sol

12: contract RemoteRoleController is Initializable, AccessControl, Pausable, UUPSUpgradeable
{

RemoteRoleController.sol#L12

Recommendation

Remove the unused contract.

23​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/LeverageBaseOftAdapter.sol#L12
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteRoleController.sol#L12

​

IMM-INSIGHT-06
Pool.sol imports CrossChainController twice

Id IMM-INSIGHT-06

Severity INSIGHT

Category Informational

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13

Description

Pool.sol#L15-L16 imports the same contract twice, increasing the contract size and thus its deployment

cost.

Recommendation

Avoid importing the same contract twice.

24​ Immunefi Audits​ Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/Pool.sol#L15-L16

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	
	FINDINGS
	IMM-CRIT-01
	IMM-HIGH-01
	IMM-HIGH-02
	IMM-MED-01
	IMM-LOW-01
	
	IMM-LOW-02
	IMM-INSIGHT-01
	
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06

