IMMUNEFI AUDIT

£} Immunefi / & Plaza

foATE ,Jur_aé 11',"20_2'5,' Lo e R

UDITOR Drast1cWaterMelon and. Panda
Security Researchers ;

EPORT BY gmhacker Immunef1 Head of l_'

Securlty

_ About Immunefi R
(P Terminology . - . . v —=
Executlve Summary e E "--,‘
7B -incings : .

S

@ Immunefi

ABOUT IMMUNEFI
TERMINOLOGY
EXECUTIVE SUMMARY
FINDINGS
IMM-CRIT-01
IMM-HIGH-01
IMM-HIGH-02
IMM-MED-01
IMM-LOW-01
IMM-LOW-02
IMM-INSIGHT-01
IMM-INSIGHT-02
IMM-INSIGHT-03
IMM-INSIGHT-04
IMM-INSIGHT-05
IMM-INSIGHT-06

Immunefi Audits

Immunefi / Plaza Finance

co oo 0 AW

10
12
15
16
17
19
20
21
22
24

@ Immunefi

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than
$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing
over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a
single command center to more than 300 projects — including Sky (formerly MakerDAQO), Optimism,
Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,
AAVE, ZKsync, Morpho, Ethena, USDTO, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,
Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi's market leading products
and community of elite security researchers with a curated set of the very best security products and
technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus
Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi's proprietary vulnerabilities dataset — the largest and most
comprehensive in web3, ensuring that security leaders and teams have the best possible tools for
identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

- Likelihood represents the likelihood of a finding to be triggered or exploited in practice

- Impact specifies the technical and business-related consequences of a finding

- Severity is derived based on the likelihood and the impact
We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

LIKELIHOOD IMPACT
MEDIUM
CRITICAL
HIGH
MEDIUM Medium Medium
Low Low
NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely checked,
regardless of severity.

4 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

EXECUTIVE SUMMARY

Over the course of 5 days in total, Plaza Finance engaged with Immunefi to review the cross-chain LP
distributor contracts. In this period of time a total of 12 issues were identified.

SUMMARY
Name Plaza Finance
S https://github.com/Convexity-Research/plaza-evm/tree/80e5
3319a7a4862f823d420e61e40dce36e03808
Type of Project Defi Derivatives
Audit Timeline May 16th - May 22nd
Fix Period June 10th

ISSUES FOUND

Severity Count Fixed Acknowledged
Critical 1 1 0

High 2 2 0

Medium 1 1 0

Low 2 2 0

Insights 6 6 0

CATEGORY BREAKDOWN

Bug 6

Gas Optimization 0

Informational 6

5 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

FINDINGS

IMM-CRIT-01
Double-Claim via Cross-Chain Transfers

Id IMM-CRIT-01

Category Bug

Status Fixed in
dfea®8d31841e63858d129628be@0@d7cd24be67

Description

A user can potentially claim rewards on a chain, transfer their tokens to a different chain, and claim again
on the remote chain. This is possible if the system does not globally track which tokens have already been
claimed for a given period across all chains.

Impact:
e Dishonest users can receive more than their fair share of rewards.
e The system can be drained of USDC.
e Honest users may be left with nothing to claim.

Root Cause:
e Claims are tracked per chain, not globally.
e There is no mechanism to prevent a token/account from claiming on multiple chains for the same
period.
e Transactions are not atomic and guaranteed to be executed in order.

Recommendation

Transfer tokens with the period information
By transferring tokens with the period information, when the tokens arrive on the remote chain, make sure
the period matches.

6 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

Disable transfers between chains during the period increase
By disabling transfers between chains during the USDC distribution period, it will prevent users from

moving tokens after claiming.

7 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

IMM-HIGH-01

Transfers between remote chains will cause [l EHRT-XETidIgl gl I ENE T tO

track incorrect data

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in 92ebdf771dad9a7ada8b76242d1c0006f7a5fbca
Description

BondBaseOftAdapter is used to track the amount of [Jdplelaly bridged to remote chains via the
(link here) mapping. When a cross chain transfer between Base and a remote chain occurs,
such mapping is updated accordingly to correctly track the amount of currently transferred to the
remote chain.

When a cross chain transfer between two remote chains occurs, the mapping will not be
updated despite both chains' total amounts of [Jdils|al; having changed.

Impact
Having deviate from correctly representing the amount of held in remote chains will
cause the following issues:

1. During a call to FJRCEIORT e aaas increasePeriodForRemote, the mapping is

written the value held remoteBalance for a given remote chain id. This will propagate the error to
which determines the amount of USDC to be sent to
a remote chain, ultimately leading to an incorrect amount of USDC being transferred to remote
chains.

2. When bridging back to Base | ORI AT I I is executed as part of the
incoming LayerZero processing flow. Such method decreases by the bridged amount
and then mints such amount to the cross chain transfer recipient: if tracks a lower
amount than the actual amount of bridged to a given remote chain. In this case, it is possible
for transfers from said chain to Base to be correctly initiated on the remote chain, but fail because of
an overflow when being processed on Base, leading to stuck tokens for users.

8 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L32

@ Immunefi

Recommendation

Not sure if its possible to frontrun on MIDL network, but as its EVM based network, there is a possibility so |
would Modify the swapCollateral to accept a user-provided|f I N aaoIl parameter instead of calculating
it on-chain.

Two possible fixes for the highlighted issue were identified:

1. Implement a hub-and-spoke architecture via LayerZero peer permissions: allowing Base to interact
with every remote chain, but constraining remote chains to interact solely with Base will disallow
remote-to-remote transfers, removing the root cause of the issue altogether.

2. Implement additional functionality within BondRemoteOftAdapter._credit and/or

Sl AN AR N T IRIge e tO0 send a LayerZero cross chain message to Base's
R o to have it update the mapping accordingly.

9 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

IMM-HIGH-02
Cross-Chain USDC Distribution Imbalance Issue

Id IMM-HIGH-02

Severity High

Category Bug

Status Fixed in dfea08d31841e63858d129628be000d7cd24be67
Description
Issue:

The current cross-chain distribution mechanism for USDC and shares is susceptible to imbalances due to
the timing of the snapshot and the actual USDC transfer. The process is as follows:

1. Snapshot: The base chain takes a snapshot of balances for each remote chain.

2. USDC Transfer: USDC is sent to each remote chain based on the snapshot.

3. Remote Distribution: Remote distributors receive USDC and are expected to distribute it according
to the snapshot.

4. Shares per Token Update: The shares per token value is sent to all remote chains.

Problem:
If tokens are moved between chains between the snapshot and the USDC transfer, the actual balances on
remote chains may not match the snapshot. This can result in:

Some remote distributors having insufficient USDC to fulfill claims (causing claim failures).

Others having excess USDC (which may be stuck or misallocated).

This is a classic race condition between the snapshot and the actual transfer, leading to cross-chain state
divergence and potential denial of service for users on some chains.

Reference:
See RemoteDistributor.sol#L117-L119 for the claim logic that can fail if the USDC balance is insufficient.

Recommendation

Below are several possible mitigations:

10 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteDistributor.sol#L117-L119

@ Immunefi

Implement a Rebalancing Mechanism
Introduce a function/mechanism to rebalance USDC across remote distributors after the initial
distribution.

Lock Transfers During Distribution
Consider pausing or restricting token transfers between the snapshot and the completion of USDC
distribution to remote chains. This can be done by:

o Using the mechanism to temporarily pause transfers.

o Only allowing transfers after all remote chains have confirmed receipt of USDC.

Pull USDC from base on claim
Instead of transferring USDC to remote chains, pull USDC from the base chain on claim. This way,
the USDC is always there when needed.

This is a simpler mechanism to implement and does not require any additional state or mechanisms.

It is not as gas efficient as transferring USDC once and having it there when needed, but it is more secure.

11 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

IMM-MED-01
CCIP messages will fail to be sent correctly

Id IMM-MED-01

Severity Medium

Category Bug

Status Fixed in cfa39f7201db315906222f400100f255932e0d13
Description

O T T O T A (o] o R A N M=V Yo To (VF{e [Fel T I =DM B A gl o VieI S May be called to send USDC to remote chains via
CCIP.

The method uses the method to construct the CCIP message to be sent from
Base to any EVM remote chain: every message is built using [T TR E)), Which may be used to
signal to CCIP's router contract that the user intends to pay the necessary fees in the chain's native asset.
Because fails to send any native ETH when calling

eyt gt ele, Sending CCIP messages will always fail.

Proof of Concept

The following PoC may be added to a [TG eI o na s Rl file and executed via|fRe LI IRIe
Audi tf

TypeScript
pragma solidity "0.8.26;

import {Client, IRouterClient} from "../../src/cross-chain/CrossChainController.sol";
import {UUPSUpgradeable} from
"@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";

import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
import "forge-std/Test.sol";
interface IApprove {

function approve(address, uint) external;
}

contract Audit is Test {
address usdc;

12 Immunefi Audits Immunefi / Plaza Finance

@3 Immunefi

address router;
address user;

function setUp() external {
vm.createSelectFork(
getChain(6x2105) .rpcUrl, // fork base
30516567

)

usdc = 0x833589fCD6eDb6EB8T4c7C32D4f71b54bdA0B2913 ;
router = 0x881e3A65B4d4aB4dD529061dd0071cf975F58bCD;
user = makeAddr("user");

// Give usdc allowance
deal(usdc, user, 1_.000_000);
vm.prank(user); IApprove(usdc).approve(router, 1_000_000);

}

function test_sendCCIP_fails() external {
uint64 ethID = 5009297550715157269; // ETH ccip destination chain selector

// Build CCIP message
Client.EVMTokenAmount[] memory amounts = new Client.EVMTokenAmount[](1);
amounts[@] = Client.EVMTokenAmount({token: usdc, amount: 1_000_000});
Client.EVM2AnyMessage memory message = Client.EVM2AnyMessage({

receiver: abi.encode(user),

data: bytes("")

tokenAmounts: amounts,

extraArgs: "",

feeToken: address(0)

1)

// Fetch fee

uint256 fee = IRouterClient(router).getFee(
ethID,
message

)

assertGt(fee, 0, "!fee");
startHoax(user); // deal + startPrank

// CCIP msg send fails if no fee is provided
vm.expectRevert("InsufficientFeeTokenAmount()");
IRouterClient(router).ccipSend(

ethID,

message

)

// CCIP msg is successfully executed
IRouterClient(router).ccipSend{value: fee}(
ethID,
message

)

13 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

Recommendation

Execute [odeffealoliin-Igolerio =11l iAVEINV-HR -2 4@ in order to forward the correct amount of ETH to cover

fees.

14 Immunefi Audits Immunefi / Plaza Finance

@ Immunefi

IMM-LOW-01
DIEIA A Ui Lo -V ETo A= g BT gh Ko Yo BN FARRALe| CONSiders future periods as finalized

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in cfa39f7201db315906222f400100f255932e0d13
Description

DEREA L oJVEde - Yo EY AT B T Kol [EYRPAYe iS Used by the contract to determine whether a given period has
been finalized or not, and thus whether rewards may be claimed for such period.

The method's current implementation only verifies that period == lastPeriod
O e s O T) cvaluates to [Hence, for
anysuch [gE\lberiod != lastPeriod, where lastPeriod = _currentPeriod() - 1Sisl=Xelelple[is[elaRWYII|
evaluate to and the method will be considered as finalized.

Recommendation

Modify the_DistributorAdapter.sol#L42 condition to check| gt IIgte, allowing only periods

strictly smaller than B IR gt

15 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/DistributorAdapter.sol#L42

@ Immunefi

IMM-LOW-02
RemoteRoleController uses non-upgradeable dependencies

Id IMM-LOW-02

Severity Low

Category Bug

Status Fixed in cfa39f7201db3159b6222f400100f255932e0d13
Description

RemoteRoleController inherits OpenZeppelin's UUPSUpgaradeable contract, making it able to hold the logic
for upgrading an ERC-1967 proxy when it is used as its implementation.

Because this method is intended to be used as the implementation for a proxy contract, it should utilize the
upgradeable versions of OpenZeppelin's library contracts, which use custom storage locations in order to
ensure that future implementation upgrades do not change the implementation's storage layout, which
would lead to corrupting the proxy's storage.

Currently, RemoteRoleController inherits the non-upgradeable AccessControl and Pausable contracts.

Recommendation

Use AccessControlUpgradeable and PausableUpgradeable instead of AccessControl and Pausable.

16 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteRoleController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v5.0/contracts/proxy/utils/UUPSUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/6b9adf75b0048bfd320d9ad102240514e0f12735/contracts/access/AccessControlUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/6b9adf75b0048bfd320d9ad102240514e0f12735/contracts/utils/PausableUpgradeable.sol

@3 Immunefi

IMM-INSIGHT-01
Unused imports

Id IMM-INSIGHT-01

Severity

Category Informational

Status Fixed in ¢fa39f7201db3159b6222f400100f255932e0d13
Description

The following imports aren't used in the respective contracts:

TypeScript

File: src/cross-chain/BondBaseOftAdapter.sol

13:

import {EnforcedOptionParam} from

"@layerzerolabs/oapp-evm/contracts/oapp/libs/OAppOptionsType3.sol";

14:

import {I0AppCore} from

"@layerzerolabs/oapp-evm/contracts/oapp/interfaces/I0AppCore.sol”;

src/cross-chain/BondBaseOftAdapter.sol#lL13, src/cross-chain/BondBaseOftAdapter.sol#l 14

TypeScript

File: src/cross-chain/BondRemoteOftAdapter.sol

10: import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

12:

import {OFTComposeMsgCodec} from

"@layerzerolabs/oft-evm/contracts/libs/0OFTComposeMsgCodec.sol";

src/cross-chain/BondRemoteOftAdapter.sol#L 10, src/cross-chain/BondRemoteOftAdapter.sol#l 12

TypeScript

File: src/cross-chain/CrossChainController.sol

17

Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L13
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L14
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondRemoteOftAdapter.sol#L10
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondRemoteOftAdapter.sol#L12

@ Immunefi

13: import {EnforcedOptionParam} from

"@layerzerolabs/oapp-evm/contracts/oapp/libs/0OAppOptionsType3.sol";
src/cross-chain/CrossChainController.sol#L13

TypeScript

File: src/cross-chain/RemoteDistributor.sol

16: import {I0AppCore} from

"@layerzerolabs/oapp-evm/contracts/oapp/interfaces/I0AppCore.sol";

20: import {IRouterClient} from

"@chainlink/contracts/src/v@.8/ccip/interfaces/IRouterClient.sol";

src/cross-chain/RemoteDistributor.sol#L 16, src/cross-chain/RemoteDistributor.sol#l 20

Recommendation

Remove unused imports.

18 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/CrossChainController.sol#L13
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteDistributor.sol#L16
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteDistributor.sol#L20

@ Immunefi

IMM-INSIGHT-02
DistributorAdapter doesn't disable initializers

Id IMM-INSIGHT-02

Severity

Category Informational

Status Fixed in ¢fa39f7201db3159b6222f400100f255932e0d13
Description

DistributorAdapter does not disable initializers during deployment, leaving the contract's implementation
open for initialization.

Recommendation

Add KEEI IS EIEPLIE]@®] to the contract's constructor.

19 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/DistributorAdapter.sol

@ Immunefi

IMM-INSIGHT-03

DistributorAdapterCore.claimgglelslleMi[{=WMerkleProof.verifyCalldata

Id IMM-INSIGHT-03

Severity

Category Informational

Status Fixed in ¢fa39f7201db3159b6222f400100f255932e0d13
Description

OpenZeppelin's MerkleProof library offers methods to validate a merkle proof located in memory or in
calldata:

e MerkleProof.verify

e MerkleProofverifyCalldata

Recommendation

DistributorAdapterCore.claim may use the calldata version to avoid copying the proof from to
memory, reducing the method's gas consumption.

20 Immunefi Audits Immunefi / Plaza Finance

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol#L45-L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol#L110-L112
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/DistributorAdapterCore.sol#L99-L117

@ Immunefi

IMM-INSIGHT-04
Unused definition

Id IMM-INSIGHT-04

Severity

Category Informational

Status Fixed in ¢fa39f7201db3159b6222f400100f255932e0d13
Description

The following modifier are never used, consider removing them.

TypeScript
File: src/cross-chain/BondBaseOftAdapter.sol

127 : modifier onlyPoolFactory() {

128: if (msg.sender != address(BondToken(address(innerToken)).poolFactory())) revert
OnlyPoolFactory();

129: _;

130: }

BondBaseOftAdapter.sol#L127

Recommendation

Remove the unused modifier and the error

21 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L127
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L36

@ Immunefi

IMM-INSIGHT-05
Pausable contracts not using modifiers

Id IMM-INSIGHT-05

Severity

Category Informational

Status Fixed in ¢fa39f7201db3159b6222f400100f255932e0d13
Description

These contracts import a library, but there isn't any use of a pausable modifier.

TypeScript
File: src/cross-chain/BondBaseOftAdapter.sol

19: contract BondBaseOftAdapter is
20: Initializable,

21: UUPSUpgradeable,

22: OwnableUpgradeable,

23: PausableUpgradeable

BondBaseOftAdapter.sol#L19

TypeScript
File: src/cross-chain/CrossChainController.sol

17: contract CrossChainController is Initializable, UUPSUpgradeable, PausableUpgradeable {

CrossChainController.sol#L 17

TypeScript
File: src/cross-chain/LeverageBaseOftAdapter.sol

22 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/BondBaseOftAdapter.sol#L19
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/CrossChainController.sol#L17

@3 Immunefi

12:
13:
14:
15:
16:

contract LeverageBaseOftAdapter is

Initializable,
UUPSUpgradeable,
OwnableUpgradeable,
PausableUpgradeable,

LeverageBaseOftAdapter.sol#L12

TypeScript
File:

12:

{

contract RemoteRoleController is Initializable,

src/cross-chain/RemoteRoleController.sol

RemoteRoleController.sol#lL 12

Recommendation

AccessControl, Pausable, UUPSUpgradeable

Remove the unused contract.

23

Immunefi Audits

Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/LeverageBaseOftAdapter.sol#L12
https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/cross-chain/RemoteRoleController.sol#L12

@ Immunefi

IMM-INSIGHT-06

Pool.sol imports Mg EiRlidg1RN:ly tWice

Id IMM-INSIGHT-06

Severity

Category Informational

Status Fixed in ¢fa39f7201db3159b6222f400100f255932e0d13
Description

Pool.sol#L.15-L16 imports the same contract twice, increasing the contract size and thus its deployment
cost.

Recommendation

Avoid importing the same contract twice.

24 Immunefi Audits Immunefi / Plaza Finance

https://github.com/Convexity-Research/plaza-evm/blob/ef189970b3d6ceaa92cf935aa9979662ed8813c8/src/Pool.sol#L15-L16

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	
	FINDINGS
	IMM-CRIT-01
	IMM-HIGH-01
	IMM-HIGH-02
	IMM-MED-01
	IMM-LOW-01
	
	IMM-LOW-02
	IMM-INSIGHT-01
	
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06

