IMMUNEFI AUDIT

&3 Immunefi / A Hoenn

j June i1, 2025
UDITOR Neumo Securlty Researcher.l. e

EPORT BY gmhacker Immun_efi I-]ea‘d of. i

Securlty

_ About Immunefi

02] Termlnology g
Executive Summary
N -incings :

S

@ Immunefi

ABOUT IMMUNEFI
TERMINOLOGY
EXECUTIVE SUMMARY
FINDINGS
IMM-HIGH-01
IMM-MED-01
IMM-MED-02
IMM-MED-03
IMM-LOW-01
IMM-LOW-02
IMM-INSIGHT-01
IMM-INSIGHT-02
IMM-INSIGHT-03
IMM-INSIGHT-04
IMM-INSIGHT-05
IMM-INSIGHT-06
IMM-INSIGHT-07

Immunefi Audits

Immunefi / Hoenn

© 00O o 01 b W

10

12
13
14
15
16
18
19
20

@ Immunefi

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than
$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing
over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a
single command center to more than 300 projects — including Sky (formerly MakerDAQO), Optimism,
Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,
AAVE, ZKsync, Morpho, Ethena, USDTO, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,
Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi's market leading products
and community of elite security researchers with a curated set of the very best security products and
technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus
Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi's proprietary vulnerabilities dataset — the largest and most
comprehensive in web3, ensuring that security leaders and teams have the best possible tools for
identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3 Immunefi Audits Immunefi / Hoenn

@ Immunefi

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

- Likelihood represents the likelihood of a finding to be triggered or exploited in practice

- Impact specifies the technical and business-related consequences of a finding

- Severity is derived based on the likelihood and the impact
We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

LIKELIHOOD IMPACT
MEDIUM
CRITICAL
HIGH
MEDIUM Medium Medium
Low Low
NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely checked,
regardless of severity.

4 Immunefi Audits Immunefi / Hoenn

@ Immunefi

EXECUTIVE SUMMARY

Over the course of 5 days in total, Hoenn engaged with Immunefi to review the smart contracts located in
hoenn-protocol/src/contracts. In this period of time a total of 13 issues were identified.

SUMMARY
Name Hoenn
Audit Repository https://github.com/hoenn-fi/hoenn-protocol/src/contracts
Audit Commit ededff3f8837217edcr7a73bab6802e0082e121ef
Type of Project Liquidity Provider, Staking
Audit Timeline May 26th - May 30th
Fix Period June 10th

ISSUES FOUND

Severity Count Fixed Acknowledged
Critical 0 0 0

High 1 1 1)

Medium 3 3 0

Low 2 2 0

Insight 7 5 2

CATEGORY BREAKDOWN

Bug 6

Gas Optimization 0

Informational 7

5 Immunefi Audits Immunefi / Hoenn

@ Immunefi

FINDINGS

IMM-HIGH-01
Interest index is not updated correctly

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in be488db486e4f142d769387a09d18289178590e7
Description

Function is called to accrue interest for a user. If the user has not yet borrowed [
the function sets the user's interest index to the old value and returns early. It should instead set it to the
updated interest index. Otherwise, the user will accumulate interest that should not exist.

This issue is especially problematic in the early days of the protocol, when the interest index is not updated
frequently and larger amounts of interest may be incorrectly accrued.

Consider the following example:

CIAVETT e (o | CEVGCIAVE T L W W T E IRV IS] astUpdateTimestamp = block.timestamplinterestIndex|
= RATE_PRECISIONS

e One week later, a user deposits collateral in Vault A. The user has zero debt, so the interest index is

not updated. The user's RIRERATE_PRECISIONN

e In the same block, the user borrows I, Debt is still zero, so the interest index is not updated.

The user’s CMEERATE_PRECISIONK

e Also in the same block, the user borrows more , increasing their debt. The interest index is
now updated. However, interest is accrued as if the user borrowed one week ago, resulting in
incorrect interest charges.

Recommendation

Apply the following fix:

6 Immunefi Audits Immunefi / Hoenn

@ Immunefi

TypeScript

function _accruelnterest(address _user) internal {
i3 _updateInterestIndex();
+

if (debtBalances|[_user] == 8) {
userInterestIndex[_user] = interestIndex;
return;

}

- _updateInterestIndex();

Proof of Concept

You can add the following test to the Vault.t.sol file to test this issue:

TypeScript

function test_Interest_Accrued_Bug() public {
uint256 depositAmount = 10 ether;
vm.startPrank(alice);
collateral.approve(address(vaultProxy), depositAmount);
vm.expectEmit(true, true, true, true, address(vaultProxy));
emit IVault.Deposited(alice, depositAmount);
vaultProxy.deposit(depositAmount, alice);

vm.warp(block.timestamp + 7 days);
vaultProxy.mint(1 ether);

// After minting 1 ether, the debt + interest should be 1 ether
assert(vaultProxy.getTotalDebtWithInterest(alice) == 1 ether);

vaultProxy.mint(1 ether);

// After minting 1 more ether, the debt + interest should be 2 ether, but it's more
assert(vaultProxy.getTotalDebtWithInterest(alice) > 2 ether);

vm.stopPrank() ;

7 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-MED-01
No mechanism to handle bad debt

Id IMM-MED-01
Severity Medium
Category Bug
Fixed in
Status e c7c4de90069b5f7c0949e1fObac6f1c9d4091f13
e 90b440bab292dad65d3cc58bb76b96dT981a6bbc
o ebfd287ea9fbaf43a0b@cbe89efae8fd2ef4a7f9

Description

If a position is insolvent (i.e., the value of the debt exceeds the value of the collateral) or has a health factor
slightly over 100%, liquidations are meant to reduce the risk it poses to the protocol. However, it's possible
that after multiple liguidations, a position could be left with no collateral but still have remaining debt.

This is a dangerous state because the position would continue to accrue interest with no collateral to cover
it. The current protocol has no mechanism to resolve or absorb this bad debt.

Recommendation

Implement an absorb mechanism to allow the protocol to recognize and absorb unbacked debt. This would
enable it to close out positions that are beyond recovery and prevent ongoing accumulation of bad debt.

8 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-MED-02
Liquidation should leave positions with better health, whenever possible

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 53117a1156668cd811a95783657969ec61b8b12f
Description

If a position is not insolvent, liquidation should not leave it in a worse state of health than before. Otherwise,
it increases the risk of repeated or cascading liquidations. In such cases, the protocol should prioritize the
liquidator’s share, even if it means reducing the protocol's own share.

Currently, the protocol always distributes both the liquidator and protocol shares as defined, even if doing
so worsens the borrower’s health or renders the position insolvent.

Example:
e Liguidation penalty: 10%
e Liquidator bonus: 5%
e Liguidation threshold: 80%
e User deposits 10 ETH and borrows 7 ETH
e Collateral price drops to 0.75 ETH - collateral value is now 7.5 ETH > LTV is above 80%, eligible for
liguidation

If a liquidator repays 3.5 ETH (50% of the debt), they receive:
3.5 x (1 + 10%) / 0.75 = 5.13 ETHEpReloJIE\CIE-18
This leaves the borrower with less than 50% of their original collateral, worsening the position’s health.

But if only the liquidator’s share is paid:
ER I G Y BV N LRV Sl in collateral is transferred.

This preserves more collateral for the borrower and improves post-liquidation health.

Recommendation

Consider reducing or skipping the protocol’'s share in cases where full liuidation payout would worsen the

9 Immunefi Audits Immunefi / Hoenn

@ Immunefi

borrower’s position. This would help prevent unnecessary risk of cascading liquidations and better protect
overall protocol solvency.

10 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-MED-03
Risk of liquidations after unpausing

Id IMM-MED-03

Severity Medium

Category Bug

Status Fixed in 277f1f1858877e6612a8253f6036f9f041bb7a66
Description

When the protocol is paused, borrowers are at risk of being liquidated once operations resume. This
happens because all functions that could improve a user's position—such as repayments or collateral
top-ups—are also paused. During this time, interest continues to accrue, increasing user debt. Additionally,
slashing events could occur while the protocol is paused, further worsening users’ health factors.

As a result, borrowers may face immediate liquidation when the protocol is unpaused.

Recommendation

To mitigate this risk, consider the following possible solutions:

e Allow repayments during pause: This gives users the opportunity to reduce their debt and improve
their health before the protocol is unpaused.

¢ Implement a cooldown period after unpausing: Introduce a delay before liquidations are enabled
again, allowing borrowers time to act.

These are just a few possible solutions. The key goal is to prevent borrowers from being unfairly liguidated
immediately after the protocol resumes.

11 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-LOW-01

Lack of upper bound check in H3dmKe[Vhke EYdXelsIdIaFARAY,

Id IMM-LOW-01

Severity Low

Category Bug

Status Fixed in 434b489b4223e50717467c4c58ce6534df851d2¢c
Description

The function HdRIIEIalo IR} does not correctly validate the EENLUEIRNESS input parameter. It
checks that the value is greater than [IRK[IMeEYIgIaIREer, but it does not ensure that it is

YNSRI IIIRARY. This could allow a penalty greater than 100% if the function is called with an
incorrect value.

Recommendation

Apply the following fix:

TypeScript

function setLiquidationPenalty(
uint256 _newPenaltyBps
) external onlyRole(TIMELOCK_ROLE)

require(
= _newPenaltyBps > liquidatorBonusBps,
+ _newPenaltyBps > liquidatorBonusBps &&
+ _newPenaltyBps <= BASIS_POINTS_DIVISOR,

"PENALTY_MUST_EXCEED_BONUS"
)

liquidationPenaltyBps = _newPenaltyBps;
emit ConfigChanged("LiquidationPenalty", _newPenaltyBps);

12 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-LOW-02

AR EY R Tl I B0y must be checked to be strictly greater than

initiallLtvBps

Id IMM-LOW-02

Severity Low

Category Bug

Status Fixed in e093f39e882e2217254a043efe13668a62253ccf
Description

When initializing a [ENIRY the HIRIEIBE LTI AINE IR must not be equal to HIREEIRE L.

Otherwise, it would be possible to create positions that are immediately liquidatable. Since the functions

HARERIENEIEREIS e and SRV FYS LIl Ig-F e}l enforce that the threshold must be strictly greater than

the LTV ratio, the same check should apply during initialization.

Recommendation

Apply the following fix:

TypeScript
require(
params.initiallLtvBps <= BASIS_POINTS_DIVISOR &&
= params.initialliquidationThresholdBps >= params.initialltvBps &&
+ params.initialliquidationThresholdBps > params.initialltvBps &&
params.initialliquidationThresholdBps <= BASIS_POINTS_DIVISOR,
“INVALID_LIQUIDATION_VARIABLES"

13 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-01
Rebasing tokens cannot be used as collateral

Id IMM-INSIGHT-01

Severity

Category Informational

Status Acknowledged
Description

Some LRTs, such as SR are rebasing tokens. These tokens automatically adjust their balances to reflect
yield, which breaks standard accounting assumptions. Using rebasing tokens as collateral can lead to
serious issues in the protocol’'s accounting, including misreporting of collateral balances and accumulation
of inaccessible funds.

If a rebasing token is used in a vault, the accrued collateral may become locked and unrecoverable without
a contract upgrade.

Recommendation

Do not use rebasing tokens as collateral in any of the protocol's vaults. Always verify a token’s behavior
before creating a vault to ensure compatibility with the protocol's accounting model.

14 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-02
Risky exchange rate method

Id IMM-INSIGHT-02

Severity

Category Informational

Status Acknowledged
Description

The current implementation of is risky because it relies on BNEIRAIIYIRE to
determine the value of the collateral. Depending on the underlying ERC4626 vault's implementation, this
function can potentially be manipulated by users to return artificially low or high values, misrepresenting
the true value of the collateral.

Using this adapter to price another collateral is equally unsafe, as it could compromise the integrity of the
protocol’s pricing mechanism.

Recommendation

Avoid using this adapter unless the underlying ERC4626 implementation is fully audited and known to be
safe from manipulation. Consider alternative approaches that use more robust pricing mechanisms.

15 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-03
Interest is supposed to compound annually

Id IMM-INSIGHT-03

Severity

Category Informational

Status Fixed in
a7183a662384€7b892665320d660744f388992bd

Description

According to the documentation, interest is intended to compound annually. However, the current
implementation calculates interest based solely on the user’s debt balance, meaning it does not compound
annually as described.

Recommendation

Implementing true annual compounding interest would require major changes to the protocol. Currently,
repayments are applied to interest first, then to the principal. To align with annual compounding, the system
would need to reverse this: pay down the principal first, then the interest. Additionally, after one year from
the initial borrow, the accumulated interest should be added to the debt balance so it begins accruing its
own interest. The timer would also need to reset to begin tracking the next compounding period.

Note: I've assessed this as an Insight, assuming the inconsistency lies in the documentation rather than the

code. If the protocol is truly intended to compound interest annually, this would be at least a Medium
severity issue.

16 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-04
Unnecessary check in

Id IMM-INSIGHT-04

Severity

Category Informational

Status Fixed in 6¢cafdd83430095¢373ef84a63bb1d2952aa759dc
Description

The]RERIRIEY function in the contract includes an unnecessary
improve readability.

TypeScript

if (totalDebtWithInterest > 0) {

uint256 remainingCollateralValue = remainingShares > ©
? IAdapterRegistry(adapterRegistry).getValueInETH(
address(collateralToken),
remainingShares

)
. 0;

require(
remainingCollateralValue > 0 ||
"VALUATION_FAILED"

remainingShares ==
)i

uint256 maxBorrowableAfter = (remainingCollateralValue
loanToValueRatioBps) / BASIS_POINTS_DIVISOR;
require(
totalDebtWithInterest <= maxBorrowableAfter,
“"INSUFFICIENT_COLLATERAL_RATIO"

)

check that can be removed to

We see in the final require that for it to pass, maxBorrowableAfter must be greater than zero, since

totalDebtWithinterest is known to be greater than zero. This means remainingCollateralValue must also be

greater than zero, as it directly affects maxBorrowableAfter.

In turn, for remainingCollateralValue to be greater than zero, remainingShares must also be greater than

17

Immunefi Audits

Immunefi / Hoenn

@ Immunefi

Zero.

Therefore, the earlier require that checks:

Unset

require(
remainingCollateralValue > O || remainingShares == 0,
"VALUATION_FAILED"

)

is unnecessary. If remainingShares is zero, the call would revert regardless due to the final require, and if it's

non-zero, remainingCollateralvalue must be positive. The second require already guarantees correctness.

Recommendation

Apply the following fix:

TypeScript

- require(
= remainingCollateralValue > O || remainingShares == 0,
= "VALUATION_FAILED"

-);

18 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-05
Ensure collateral tokens have 18 decimals

Id IMM-INSIGHT-05

Severity

Category Informational

Status Fixed in
90f02802399f5037ac9192439dd8ef299b5ab053

Description

The protocol implicitly assumes that the collateral token always has 18 decimals. To enforce this
assumption and improve security, the function in the contract should explicitly check the
token’s decimals. Relying on the fact that current mainstream LRTs use 18 decimals is not future-proof.

Recommendation

Apply the following fix:

TypeScript

import "@openzeppelin/contracts/token/ERC20/IERC26.s0l";
+import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

+ require(IERC20Metadata(params.collateralToken).decimals() == 18, "INVALID_DECIMALS");

collateralToken = params.collateralToken;
uToken = params.uToken;

19 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-06
Redundant check in Vault's function

Id IMM-INSIGHT-06

Severity

Category Informational

Status Fixed in 539aa0ec3bb4a337¢c879d911fOfc758a8baccr4b
Description

The bounds check in the function of the contract includes an unnecessary condition that
can be removed for improved readability. The function ensures that RS EIIETe[VEYe YRR EIEIRAE K iS

initialLiquidatorBonusBpsjElplel NN ONIREDINAR:. Therefore, the additional check

initialLiquidatorBonusBps <= BASIS_POINTS_DIVISOREEREIe[VgleF-1a1H

Recommendation

Apply the following fix:

TypeScript

require(
params.initialliquidationPenaltyBps >=
params.initialliquidatorBonusBps &&
+ params.initialliquidationPenaltyBps <= BASIS_POINTS_DIVISOR
= params.initialliquidationPenaltyBps <= BASIS_POINTS_DIVISOR &&
= params.initialliquidatorBonusBps <= BASIS_POINTS_DIVISOR,
"INVALID_PENALTY_BONUS"
)5

20 Immunefi Audits Immunefi / Hoenn

@ Immunefi

IMM-INSIGHT-07

Usefulness of the constant (V@RGSR

Id IMM-INSIGHT-07

Severity

Category Informational

Status Fixed in 57ec8df1a706ad9de268793a9fed39142b4d4629
Description

Limiting the maximum single mint to 1M ETH using a constant ({IX@1{\[R=8N1) is not effective.

Recommendation

Consider using a governance-configurable variable instead of a constant. If that's not feasible, reduce the
constant to a more reasonable value.

21 Immunefi Audits Immunefi / Hoenn

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	FINDINGS
	IMM-HIGH-01
	
	
	IMM-MED-01
	IMM-MED-02
	IMM-MED-03
	IMM-LOW-01
	
	IMM-LOW-02
	IMM-INSIGHT-01
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06
	IMM-INSIGHT-07

