

DATE​ June 11, 2025

AUDITOR​ Neumo, Security Researcher

REPORT BY​ gmhacker, Immunefi Head of
Security

01​ About Immunefi
02​ Terminology
03​ Executive Summary
04​ Findings

​

ABOUT IMMUNEFI​ 3
TERMINOLOGY​ 4
EXECUTIVE SUMMARY​ 5
FINDINGS​ 6

IMM-HIGH-01​ 6

IMM-MED-01​ 8

IMM-MED-02​ 9

IMM-MED-03​ 10

IMM-LOW-01​ 11

IMM-LOW-02​ 12

IMM-INSIGHT-01​ 13

IMM-INSIGHT-02​ 14

IMM-INSIGHT-03​ 15

IMM-INSIGHT-04​ 16

IMM-INSIGHT-05​ 18

IMM-INSIGHT-06​ 19

IMM-INSIGHT-07​ 20

2​ Immunefi Audits​ Immunefi / Hoenn

​

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than

$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing

over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a

single command center to more than 300 projects — including Sky (formerly MakerDAO), Optimism,

Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,

AAVE, ZKsync, Morpho, Ethena, USDT0, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,

Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi’s market leading products

and community of elite security researchers with a curated set of the very best security products and

technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus

Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi’s proprietary vulnerabilities dataset — the largest and most

comprehensive in web3, ensuring that security leaders and teams have the best possible tools for

identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3​ Immunefi Audits​ Immunefi / Hoenn

​

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our

findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

-​ Likelihood represents the likelihood of a finding to be triggered or exploited in practice

-​ Impact specifies the technical and business-related consequences of a finding

-​ Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are

derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

LIKELIHOOD IMPACT

 HIGH MEDIUM LOW

CRITICAL Critical Critical High

HIGH High High Medium

MEDIUM Medium Medium Low

LOW Low

NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as

critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the

severity correlates with the associated risk. However, every finding's risk should always be closely checked,

regardless of severity.

4​ Immunefi Audits​ Immunefi / Hoenn

​

EXECUTIVE SUMMARY

Over the course of 5 days in total, Hoenn engaged with Immunefi to review the smart contracts located in

hoenn-protocol/src/contracts. In this period of time a total of 13 issues were identified.

SUMMARY

Name Hoenn

Audit Repository https://github.com/hoenn-fi/hoenn-protocol/src/contracts

Audit Commit e4edff3f8837217edc7a73bab6802e0082e121ef

Type of Project Liquidity Provider, Staking

Audit Timeline May 26th - May 30th

Fix Period June 10th

ISSUES FOUND

Severity Count Fixed Acknowledged

Critical 0 0 0

High 1 1 0

Medium 3 3 0

Low 2 2 0

Insight 7 5 2

CATEGORY BREAKDOWN

Bug 6

Gas Optimization 0

Informational 7

5​ Immunefi Audits​ Immunefi / Hoenn

​

FINDINGS

IMM-HIGH-01
Interest index is not updated correctly

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in be488db486e4f142d769387a09d18289178590e7

Description

Function _accrueInterest is called to accrue interest for a user. If the user has not yet borrowed uTokens,

the function sets the user's interest index to the old value and returns early. It should instead set it to the

updated interest index. Otherwise, the user will accumulate interest that should not exist.

This issue is especially problematic in the early days of the protocol, when the interest index is not updated

frequently and larger amounts of interest may be incorrectly accrued.

Consider the following example:

●​ Vault creator creates Vault A. Initial values: lastUpdateTimestamp = block.timestamp, interestIndex

= RATE_PRECISION.

●​ One week later, a user deposits collateral in Vault A. The user has zero debt, so the interest index is

not updated. The user’s interestIndex is set to RATE_PRECISION.

●​ In the same block, the user borrows uTokens. Debt is still zero, so the interest index is not updated.

The user’s interestIndex remains RATE_PRECISION.

●​ Also in the same block, the user borrows more uTokens, increasing their debt. The interest index is

now updated. However, interest is accrued as if the user borrowed one week ago, resulting in

incorrect interest charges.

Recommendation

Apply the following fix:

6​ Immunefi Audits​ Immunefi / Hoenn

TypeScript

TypeScript

​

 function _accrueInterest(address _user) internal {
+ _updateInterestIndex();
+
 if (debtBalances[_user] == 0) {
 userInterestIndex[_user] = interestIndex;
 return;
 }

- _updateInterestIndex();
...

Proof of Concept

You can add the following test to the Vault.t.sol file to test this issue:

 function test_Interest_Accrued_Bug() public {
 uint256 depositAmount = 10 ether;
 vm.startPrank(alice);
 collateral.approve(address(vaultProxy), depositAmount);
 vm.expectEmit(true, true, true, true, address(vaultProxy));
 emit IVault.Deposited(alice, depositAmount);
 vaultProxy.deposit(depositAmount, alice);

 vm.warp(block.timestamp + 7 days);

 vaultProxy.mint(1 ether);

 // After minting 1 ether, the debt + interest should be 1 ether
 assert(vaultProxy.getTotalDebtWithInterest(alice) == 1 ether);

 vaultProxy.mint(1 ether);

 // After minting 1 more ether, the debt + interest should be 2 ether, but it's more
 assert(vaultProxy.getTotalDebtWithInterest(alice) > 2 ether);

 vm.stopPrank();
 }

7​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-MED-01
No mechanism to handle bad debt

Id IMM-MED-01

Severity Medium

Category Bug

Status

Fixed in
●​ c7c4de90069b5f7c0949e1f0bac6f1c9d4091f13
●​ 90b440ba6292dad65d3cc58bb76b96df981a6bbc
●​ e5fd287ea9f5af43a0b0cbe89efae8fd2ef4a7f9

Description

If a position is insolvent (i.e., the value of the debt exceeds the value of the collateral) or has a health factor

slightly over 100%, liquidations are meant to reduce the risk it poses to the protocol. However, it's possible

that after multiple liquidations, a position could be left with no collateral but still have remaining debt.

This is a dangerous state because the position would continue to accrue interest with no collateral to cover

it. The current protocol has no mechanism to resolve or absorb this bad debt.

Recommendation

Implement an absorb mechanism to allow the protocol to recognize and absorb unbacked debt. This would

enable it to close out positions that are beyond recovery and prevent ongoing accumulation of bad debt.

8​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-MED-02
Liquidation should leave positions with better health, whenever possible

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 53117a1156668cd811a95783657969ec61b8b12f

Description

If a position is not insolvent, liquidation should not leave it in a worse state of health than before. Otherwise,

it increases the risk of repeated or cascading liquidations. In such cases, the protocol should prioritize the

liquidator’s share, even if it means reducing the protocol's own share.

Currently, the protocol always distributes both the liquidator and protocol shares as defined, even if doing

so worsens the borrower’s health or renders the position insolvent.

Example:

●​ Liquidation penalty: 10%

●​ Liquidator bonus: 5%

●​ Liquidation threshold: 80%

●​ User deposits 10 ETH and borrows 7 ETH

●​ Collateral price drops to 0.75 ETH → collateral value is now 7.5 ETH → LTV is above 80%, eligible for

liquidation

If a liquidator repays 3.5 ETH (50% of the debt), they receive:

3.5 * (1 + 10%) / 0.75 = 5.13 ETH in collateral.

This leaves the borrower with less than 50% of their original collateral, worsening the position’s health.

But if only the liquidator’s share is paid:

3.5 * (1 + 5%) / 0.75 = 4.9 ETH in collateral is transferred.

This preserves more collateral for the borrower and improves post-liquidation health.

Recommendation

Consider reducing or skipping the protocol’s share in cases where full liquidation payout would worsen the

9​ Immunefi Audits​ Immunefi / Hoenn

​

borrower’s position. This would help prevent unnecessary risk of cascading liquidations and better protect

overall protocol solvency.

10​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-MED-03
Risk of liquidations after unpausing

Id IMM-MED-03

Severity Medium

Category Bug

Status Fixed in 277f1f1858877e6612a8253f6036f9f041bb7a66

Description

When the protocol is paused, borrowers are at risk of being liquidated once operations resume. This

happens because all functions that could improve a user’s position—such as repayments or collateral

top-ups—are also paused. During this time, interest continues to accrue, increasing user debt. Additionally,

slashing events could occur while the protocol is paused, further worsening users’ health factors.

As a result, borrowers may face immediate liquidation when the protocol is unpaused.

Recommendation

To mitigate this risk, consider the following possible solutions:

●​ Allow repayments during pause: This gives users the opportunity to reduce their debt and improve

their health before the protocol is unpaused.

●​ Implement a cooldown period after unpausing: Introduce a delay before liquidations are enabled

again, allowing borrowers time to act.

These are just a few possible solutions. The key goal is to prevent borrowers from being unfairly liquidated

immediately after the protocol resumes.

11​ Immunefi Audits​ Immunefi / Hoenn

TypeScript

​

IMM-LOW-01
Lack of upper bound check in setLiquidationPenalty

Id IMM-LOW-01

Severity Low

Category Bug

Status Fixed in 434b489b4223e50717467c4c58ce6534df851d2c

Description

The function setLiquidationPenalty does not correctly validate the _newPenaltyBps input parameter. It

checks that the value is greater than liquidatorBonusBps, but it does not ensure that it is <=

BASIS_POINTS_DIVISOR. This could allow a penalty greater than 100% if the function is called with an

incorrect value.

Recommendation

Apply the following fix:

 function setLiquidationPenalty(
 uint256 _newPenaltyBps
) external onlyRole(TIMELOCK_ROLE) {
 require(
- _newPenaltyBps > liquidatorBonusBps,
+ _newPenaltyBps > liquidatorBonusBps &&
+ _newPenaltyBps <= BASIS_POINTS_DIVISOR,
 "PENALTY_MUST_EXCEED_BONUS"
);
 liquidationPenaltyBps = _newPenaltyBps;
 emit ConfigChanged("LiquidationPenalty", _newPenaltyBps);
 }

12​ Immunefi Audits​ Immunefi / Hoenn

TypeScript

​

IMM-LOW-02
initialLiquidationThresholdBps must be checked to be strictly greater than

initialLtvBps

Id IMM-LOW-02

Severity Low

Category Bug

Status Fixed in e093f39e882e2217254a043efe13668a62253ccf

Description

When initializing a Vault, the initialLiquidationThresholdBps must not be equal to initialLtvBps.

Otherwise, it would be possible to create positions that are immediately liquidatable. Since the functions

setLoanToValueRatio and setLiquidationThreshold enforce that the threshold must be strictly greater than

the LTV ratio, the same check should apply during initialization.

Recommendation

Apply the following fix:

 require(
 params.initialLtvBps <= BASIS_POINTS_DIVISOR &&
- params.initialLiquidationThresholdBps >= params.initialLtvBps &&
+ params.initialLiquidationThresholdBps > params.initialLtvBps &&
 params.initialLiquidationThresholdBps <= BASIS_POINTS_DIVISOR,
 "INVALID_LIQUIDATION_VARIABLES"
);

13​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-INSIGHT-01
Rebasing tokens cannot be used as collateral

Id IMM-INSIGHT-01

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Some LRTs, such as eETH, are rebasing tokens. These tokens automatically adjust their balances to reflect

yield, which breaks standard accounting assumptions. Using rebasing tokens as collateral can lead to

serious issues in the protocol’s accounting, including misreporting of collateral balances and accumulation

of inaccessible funds.

If a rebasing token is used in a vault, the accrued collateral may become locked and unrecoverable without

a contract upgrade.

Recommendation

Do not use rebasing tokens as collateral in any of the protocol’s vaults. Always verify a token’s behavior

before creating a vault to ensure compatibility with the protocol’s accounting model.

14​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-INSIGHT-02
Risky exchange rate method

Id IMM-INSIGHT-02

Severity INSIGHT

Category Informational

Status Acknowledged

Description

The current implementation of SimpleERC4626Adapter is risky because it relies on convertToAssets to

determine the value of the collateral. Depending on the underlying ERC4626 vault’s implementation, this

function can potentially be manipulated by users to return artificially low or high values, misrepresenting

the true value of the collateral.

Using this adapter to price another collateral is equally unsafe, as it could compromise the integrity of the

protocol’s pricing mechanism.

Recommendation

Avoid using this adapter unless the underlying ERC4626 implementation is fully audited and known to be

safe from manipulation. Consider alternative approaches that use more robust pricing mechanisms.

15​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-INSIGHT-03
Interest is supposed to compound annually

Id IMM-INSIGHT-03

Severity INSIGHT

Category Informational

Status
Fixed in
a7183a662384e7b892665320d660744f388992bd

Description

According to the documentation, interest is intended to compound annually. However, the current

implementation calculates interest based solely on the user’s debt balance, meaning it does not compound

annually as described.

Recommendation

Implementing true annual compounding interest would require major changes to the protocol. Currently,

repayments are applied to interest first, then to the principal. To align with annual compounding, the system

would need to reverse this: pay down the principal first, then the interest. Additionally, after one year from

the initial borrow, the accumulated interest should be added to the debt balance so it begins accruing its

own interest. The timer would also need to reset to begin tracking the next compounding period.

Note: I’ve assessed this as an Insight, assuming the inconsistency lies in the documentation rather than the

code. If the protocol is truly intended to compound interest annually, this would be at least a Medium

severity issue.

16​ Immunefi Audits​ Immunefi / Hoenn

TypeScript

​

IMM-INSIGHT-04
Unnecessary check in _withdraw

Id IMM-INSIGHT-04

Severity INSIGHT

Category Informational

Status Fixed in 6cafdd83430095c373ef84a63bb1d2952aa759dc

Description

The _withdraw function in the Vault contract includes an unnecessary check that can be removed to

improve readability.

 ...
 if (totalDebtWithInterest > 0) {
 uint256 remainingCollateralValue = remainingShares > 0
 ? IAdapterRegistry(adapterRegistry).getValueInETH(
 address(collateralToken),
 remainingShares
)
 : 0;

 require(
 remainingCollateralValue > 0 || remainingShares == 0,
 "VALUATION_FAILED"
);

 uint256 maxBorrowableAfter = (remainingCollateralValue *
 loanToValueRatioBps) / BASIS_POINTS_DIVISOR;
 require(
 totalDebtWithInterest <= maxBorrowableAfter,
 "INSUFFICIENT_COLLATERAL_RATIO"
);
 }
 ...

We see in the final require that for it to pass, maxBorrowableAfter must be greater than zero, since

totalDebtWithInterest is known to be greater than zero. This means remainingCollateralValue must also be

greater than zero, as it directly affects maxBorrowableAfter.

In turn, for remainingCollateralValue to be greater than zero, remainingShares must also be greater than

17​ Immunefi Audits​ Immunefi / Hoenn

Unset

TypeScript

​

zero.

Therefore, the earlier require that checks:

require(
 remainingCollateralValue > 0 || remainingShares == 0,
 "VALUATION_FAILED"
);

is unnecessary. If remainingShares is zero, the call would revert regardless due to the final require, and if it's
non-zero, remainingCollateralValue must be positive. The second require already guarantees correctness.

Recommendation

Apply the following fix:

-
- require(
- remainingCollateralValue > 0 || remainingShares == 0,
- "VALUATION_FAILED"
-);

18​ Immunefi Audits​ Immunefi / Hoenn

TypeScript

​

IMM-INSIGHT-05
Ensure collateral tokens have 18 decimals

Id IMM-INSIGHT-05

Severity INSIGHT

Category Informational

Status
Fixed in
90f02802399f5037ac9192439dd8ef299b5ab053

Description

The protocol implicitly assumes that the collateral token always has 18 decimals. To enforce this

assumption and improve security, the initialize function in the Vault contract should explicitly check the

token’s decimals. Relying on the fact that current mainstream LRTs use 18 decimals is not future-proof.

Recommendation

Apply the following fix:

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
+import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
...
+ require(IERC20Metadata(params.collateralToken).decimals() == 18, "INVALID_DECIMALS");

 collateralToken = params.collateralToken;
 uToken = params.uToken;

19​ Immunefi Audits​ Immunefi / Hoenn

TypeScript

​

IMM-INSIGHT-06
Redundant check in Vault's initialize function

Id IMM-INSIGHT-06

Severity INSIGHT

Category Informational

Status Fixed in 539aa0ec3bb4a337c879d911f0fc758a8bacc74b

Description

The bounds check in the initialize function of the Vault contract includes an unnecessary condition that

can be removed for improved readability. The function ensures that initialLiquidationPenaltyBps is >=

initialLiquidatorBonusBps and <= BASIS_POINTS_DIVISOR. Therefore, the additional check

initialLiquidatorBonusBps <= BASIS_POINTS_DIVISOR is redundant.

Recommendation

Apply the following fix:

require(
 params.initialLiquidationPenaltyBps >=
 params.initialLiquidatorBonusBps &&
+ params.initialLiquidationPenaltyBps <= BASIS_POINTS_DIVISOR
- params.initialLiquidationPenaltyBps <= BASIS_POINTS_DIVISOR &&
- params.initialLiquidatorBonusBps <= BASIS_POINTS_DIVISOR,
 "INVALID_PENALTY_BONUS"
);

20​ Immunefi Audits​ Immunefi / Hoenn

​

IMM-INSIGHT-07
Usefulness of the constant MAX_SINGLE_MINT

Id IMM-INSIGHT-07

Severity INSIGHT

Category Informational

Status Fixed in 57ec8df1a706ad9de268793a9fed39142b4d4629

Description

Limiting the maximum single mint to 1M ETH using a constant (MAX_SINGLE_MINT) is not effective.

Recommendation

Consider using a governance-configurable variable instead of a constant. If that’s not feasible, reduce the

constant to a more reasonable value.

21​ Immunefi Audits​ Immunefi / Hoenn

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	FINDINGS
	IMM-HIGH-01
	
	
	IMM-MED-01
	IMM-MED-02
	IMM-MED-03
	IMM-LOW-01
	
	IMM-LOW-02
	IMM-INSIGHT-01
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06
	IMM-INSIGHT-07

