IMMUNEFI AUDIT

&3 Immunefi / Y, LAYERS

QOATE August 19, 2025

AUDITOR .Neumo, Security Researcher
: REPORT BY Immunefi -,

_ Overview = .
P2 Te:minology .
"Executive Summary,
_ Findings : '

S

@ Immunefi

ABOUT IMMUNEFI

TERMINOLOGY

EXECUTIVE SUMMARY
IMM-LOW-01
IMM-LOW-02
IMM-LOW-03
IMM-LOW-04
IMM-INSIGHT-01
IMM-INSIGHT-02

Immunefi Audits

Immunefi / Layer3.xyz

© O 01 AW

11

15
17

@ Immunefi

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than
$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing
over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a
single command center to more than 300 projects — including Sky (formerly MakerDAQO), Optimism,
Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,
AAVE, ZKsync, Morpho, Ethena, USDTO, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,
Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi's market leading products
and community of elite security researchers with a curated set of the very best security products and
technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus
Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi's proprietary vulnerabilities dataset — the largest and most
comprehensive in web3, ensuring that security leaders and teams have the best possible tools for
identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

- Likelihood represents the likelihood of a finding to be triggered or exploited in practice

- Impact specifies the technical and business-related consequences of a finding

- Severity is derived based on the likelihood and the impact
We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

LIKELIHOOD IMPACT

HIGH MEDIUM
CRITICAL
HIGH
MEDIUM Medium Medium
Low Low
NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely checked,
regardless of severity.

4 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

EXECUTIVE SUMMARY

Over the course of 2 days in total, Layer3.xyz engaged with Immunefi to review the tge-contracts. In this
period of time a total of 6 issues were identified.

SUMMARY
Name Layer3.xyz
Repository https://github.com/layer3xyz/tge-contracts
Audit Commit 9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8
Type of Project Infrastructure, NFT, Staking
Audit Timeline Aug 4th - Aug 5th
Fix Period Aug 6th - Aug 14th

ISSUES FOUND

Severity Count Fixed Acknowledged
Critical 0 0 0

High 0) 0

Medium 0 0 0

Low 4 4 0

Insights 2 1 1

CATEGORY BREAKDOWN

Bug 4

Gas Optimization 0

Informational 2

5 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

IMM-LOW-01
Rewards until is greater than zero are not claimable #6

Id IMM-LOW-01
Severity LOW
Category Bug
Status Fixed in 6dd3940f20baf08f48dd4aec13cfaed223930740
Description
Function I I T e e does not increment the value of reward per share when
is zero:
TypeScript
function _calculatedRewardPerShare() internal view returns (uint256 _rewardPerShare) {
if (totalWeights == 0) {
return rewardPerShare;
}

uint256 _timeSincelastUpdate = _lastTimeRewardApplicable() - lastUpdateTime;

_rewardPerShare = rewardPerShare + _timeSincelLastUpdate * rewardPerSecond * _BASE /
totalWeights;
}

This, added to the fact that when is zero, the BT AV EITIRL Y is updated:

TypeScript
if (_rewardPerShare == 0@ || _rewardPerShare > rewardPerShare) {
rewardPerShare = _rewardPerShare;

lastUpdateTime = _lastTimeRewardApplicable();

6 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

means all the seconds the contract is at the beginning in a state where [gEIgARUEIRS iS zero do not count
toward reward distribution. However, the calculation of [gSNEIgdASIeelglsl assumes that rewards are being

distributed for every second of [R IR L INIEIEg. AS a result, once is reached, there will still be
undistributed rewards in the contract, even if all stakers have claimed their rewards.

The remaining amount becomes unclaimable and can only be recovered by the owner via

emergencyWithdrawh

Let's put some numbers to see how this would unfold:

e After contract deployment and initialization, [JlgXele |y, [KSNEIRe g elelgle|, IEFIAV/JoEYLARIIE, and
are zero.

e The owner calls to set the variables above. To keep it simple, we assume
is 3,600 seconds and the reward passed to is 3,600e18.
e Also, for simplicity, assume (ST SRS TL Tl
SR oe iodF inish = 3_6008rewardPersSecond = 1e188lastupdateTine = ofEQl
= 3_600¢18}

e Until the last minute of the period, nobody stakes. So remains O during this time.
Alice then stakes 10e18 with a zero lockup period. She gets a weight of 2.5e18, and total weights is
also 2.5e18.

o After the call, and is still zero. The user's
R R RS I - cwardPerShareSnapshoth
o After FIETRIBUIEN, Alice calls NEse. The call to at the top sets:

IlrcwardPerShare = _timeSincelLastUpdate * rewardPerSecond * _BASE / totalWeights = (60
/ 2.5) * 1e18 = 24e18
Sl astUpdateTime = 3_600

o \I[els¥MpendingRewards = _staker.pendingRewards + _rewardsSinceSnapshot

_staker.weight * _rateDifferenceSinceSnapshot / _BASE = 2.5e18 * 24e18 / 1e18 = 60e18

A el=X) rcwardPerShareSnapshot = rewardPerShare = 2.5e18
N YR OLYE i) c tRewardltotalRewards = 3_540e18l

In the end, the value of includes an amount that is reserved for claiming but never will be, and

can only be recovered by a call to SulEIgEl oA R gle[g=1T.

This was an extreme example using convenient numbers to improve readability. In a real-world scenario, the

7 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

rewards corresponding to the time between the call to and the first user staking would get
stuck in the contract.

Recommendation

Do not update the value of IEAVSEILIBIIE When IgSNEIRIRUEIRS iS Zero.

TypeScript
= if (_rewardPerShare == 0 || _rewardPerShare > rewardPerShare) {
+ if (_rewardPerShare > rewardPerShare) {
rewardPerShare = _rewardPerShare;
lastUpdateTime = _lastTimeRewardApplicable();
}

8 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

IMM-LOW-02
Function should revert when the calculated weight is zero #5

Id IMM-LOW-02

Severity LOW

Category Bug

Status Fixed in
c24d86d5139d4e99687c96fa632c08e41d2c26¢ce

Description
Calls to should be disallowed when the calculated weight is zero, just as it is
implemented in the function:

TypeScript

if (_weight == @) revert ZeroWeight();

This is an extreme case because it can only happen when staking a tiny amount (1 to 3 wei, depending on
the lockup period), but all the deposits that fall into this category would not yield rewards to the depositors,
as their weight would be zero.

Recommendation

Consider applying this fix:

TypeScript
function _increaseStake(uint256 _index, uint256 _amount, address _user) internal {
Deposit storage _deposit = deposits[_user][_index];

if (_deposit.amount == 0) revert InvalidDepositIndex();

if (_deposit.lockupPeriod > @) revert CannotIncreaselLockedStake();
if (_deposit.withdrawAt > 0) revert WithdrawalAlreadyInitiated();

9 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

// Because the deposit is unlocked, we're calculating the weight with a lockup period of
uint256 _weight = _calculateWeight(@, _amount);

if (_weight == 0) revert ZeroWeight();

Alternatively, consider computing the combined weight of the current position amount (which is already
checked to be nonzero) plus the increased amount.

10 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

IMM-LOW-03
Function should not return deleted deposits #4

Id IMM-LOW-03

Severity LOW

Category Bug

Status Fixed in cbeefd1a9cfO55ea6a08bchb912e7f24c08dd78d2
Description

Function should not return deleted deposits, which are empty and are not actually deposits in
the first place.

TypeScript
_list = new Deposit[](_batchSize);
uint256 _index;
while (_index < _batchSize) {
_list[_index] = deposits[_user][_startFrom + _index];

++_index;

}

The deposit's must be positive, otherwise it should not be included in the list.

Recommendation

Consider applying the following fix:

TypeScript

= uint256 _index;
- while (_index < _batchSize) {

11 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

_list[_index] = deposits[_user][_startFrom + _index];

++_index;

}

}

assembly { mstore(_list, _index) }

+ uint256 _batchIndex;

+ uint256 _index;

+ while (_batchIndex < _batchSize) {
+ Deposit memory deposit = deposits[_user][_startFrom + _batchIndex];
+ if (deposit.amount > @) {

+ _list[_index] = deposit;

+ ++_index;

+ }

+ ++_batchIndex;

+

+

12 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

IMM-LOW-04
Deposits with an initiated withdrawal get a wrong value in #2

Id IMM-LOW-04

Severity LOW

Category Bug

Status Fixed in dfd5fa1683a8f378e7076d74a1250b705dcea76a
Description

When a user initiates a withdrawal calling [T RS EITIIRIEIENEN, the weight that corresponds to the deposit
is subtracted from the total weights through the inner call to IS g Tt

initiateWithdrawal:
https://qithub.com/laver3xvz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bci18b8/src/c
ontracts/Staking.sol#L193-L209

_decreaseStake:
https://qithub.com/laver3xvz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dbar7302bci8b8/src/c
ontracts/Staking.sol#L500-L514

will return a higher APY value for such a deposit, because is less than it should
be.

TypeScript
function calculateAPY(address _user, uint256 _index) external view returns (uint256 _apy) {
Deposit memory _deposit = deposits[_user][_index];
uint256 _weight = _calculateWeight(_deposit.lockupPeriod, _deposit.amount);
uint256 _rewardPerYear = rewardPerSecond * _12_MONTHS * _BASE * 100;

_apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * totalWeights);

}

This could cause confusion to the user who initiated the withdrawal, who would see an inflated APY for that

13 Immunefi Audits Immunefi / Layer3.xyz

https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L193-L209
https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L193-L209
https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L500-L514
https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L500-L514

@3 Immunefi

deposit.

Recommendation

Consider handling this special case:

TypeScript

function calculateAPY(address _user, uint256 _index) external view returns (uint256 _apy)
{

Deposit memory _deposit = deposits|[_user][_index];

uint256 _weight = _calculateWeight(_deposit.lockupPeriod, _deposit.amount);

uint256 _rewardPerYear = rewardPerSecond * _12_MONTHS * _BASE * 100;
= _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * totalWeights);

if (_deposit.withdrawAt > 0){

+ _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * (totalWeights +
_weight));
+ }
+ else{
+ _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * totalWeights);
+ }

14 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

IMM-INSIGHT-01
Checks to return an empty list in can be improved #3

Id

IMM-INSIGHT-01

Category Informational
Status Fixed in d1d976878c2189099bf5b775efca613cb5852154
Description

Calls to return early if the start index is greater than the total deposits:

TypeScript

// Return an empty array if non-existent user or no deposits
if (_startFrom > _totalDeposits) {
return _list;

This check is wrong, because the case where should also return an empty
array. And also the case where EEIRNIPLJE= could be added to the if statement so that the function also
returns early in that case.

Recommendation

Consider the following fix:

TypeScript
= if (_startFrom > _totalDeposits) {

+ if (_startFrom >= _totalDeposits || _batchSize == 0) {
return _list;

15 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

16 Immunefi Audits Immunefi / Layer3.xyz

@ Immunefi

IMM-INSIGHT-02
Misleading error message in function #1

Id IMM-INSIGHT-02

Severity

Category Informational

Status Acknowledged
Description

There is a check in function S EIURAIENEN that makes sure KM Yglels| iS zero:

TypeScript
if (_deposit.lockupPeriod > @) revert DepositlLocked();

But the error thrown can be misleading for the caller, because a deposit with Kl SloxElgelel greater than
zero but [tV ISR = NTe iS actually not locked, but would cause the revert anyway.

Note that the other places in the contract where the NEJSIRdRJ . error is thrown, the condition to meet is

jgt\ddeposit.unlockAt > block.timestamp!

Recommendation

Consider using a new error for this case.

17 Immunefi Audits Immunefi / Layer3.xyz

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	
	IMM-LOW-01
	IMM-LOW-02
	
	
	
	
	IMM-LOW-03
	
	
	
	
	
	
	
	
	
	
	
	
	IMM-LOW-04
	
	
	
	
	
	
	
	
	
	
	
	
	IMM-INSIGHT-01
	IMM-INSIGHT-02

