

DATE​ August 19, 2025

AUDITOR​ Neumo, Security Researcher

REPORT BY​ Immunefi

01​ Overview
02​ Terminology
03​ Executive Summary
04​ Findings

​

ABOUT IMMUNEFI​ 3
TERMINOLOGY​ 4
EXECUTIVE SUMMARY​ 5

IMM-LOW-01​ 6
IMM-LOW-02​ 9
IMM-LOW-03​ 11
IMM-LOW-04​ 13
IMM-INSIGHT-01​ 15
IMM-INSIGHT-02​ 17

2​ Immunefi Audits​ Immunefi / Layer3.xyz

​

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than

$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing

over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a

single command center to more than 300 projects — including Sky (formerly MakerDAO), Optimism,

Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,

AAVE, ZKsync, Morpho, Ethena, USDT0, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,

Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi’s market leading products

and community of elite security researchers with a curated set of the very best security products and

technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus

Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi’s proprietary vulnerabilities dataset — the largest and most

comprehensive in web3, ensuring that security leaders and teams have the best possible tools for

identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

3​ Immunefi Audits​ Immunefi / Layer3.xyz

​

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our

findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

-​ Likelihood represents the likelihood of a finding to be triggered or exploited in practice

-​ Impact specifies the technical and business-related consequences of a finding

-​ Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are

derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

LIKELIHOOD IMPACT

 HIGH MEDIUM LOW

CRITICAL Critical Critical High

HIGH High High Medium

MEDIUM Medium Medium Low

LOW Low

NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as

critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the

severity correlates with the associated risk. However, every finding's risk should always be closely checked,

regardless of severity.

4​ Immunefi Audits​ Immunefi / Layer3.xyz

​

EXECUTIVE SUMMARY

Over the course of 2 days in total, Layer3.xyz engaged with Immunefi to review the tge-contracts. In this

period of time a total of 6 issues were identified.

SUMMARY

Name Layer3.xyz

Repository https://github.com/layer3xyz/tge-contracts

Audit Commit 9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8

Type of Project Infrastructure, NFT, Staking

Audit Timeline Aug 4th - Aug 5th

Fix Period Aug 6th - Aug 14th

ISSUES FOUND

Severity Count Fixed Acknowledged

Critical 0 0 0

High 0 0 0

Medium 0 0 0

Low 4 4 0

Insights 2 1 1

CATEGORY BREAKDOWN

Bug 4

Gas Optimization 0

Informational 2

5​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

TypeScript

​

IMM-LOW-01
Rewards until rewardPerShare is greater than zero are not claimable #6

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in 6dd3940f20baf08f48dd4aec13cfaed223930740

Description

Function _calculatedRewardPerShare does not increment the value of reward per share when totalWeights

is zero:

 function _calculatedRewardPerShare() internal view returns (uint256 _rewardPerShare) {
 if (totalWeights == 0) {
 return rewardPerShare;
 }

 uint256 _timeSinceLastUpdate = _lastTimeRewardApplicable() - lastUpdateTime;

 _rewardPerShare = rewardPerShare + _timeSinceLastUpdate * rewardPerSecond * _BASE /
totalWeights;
 }

This, added to the fact that when _rewardPerShare is zero, the lastUpdateTime is updated:

...
 if (_rewardPerShare == 0 || _rewardPerShare > rewardPerShare) {
 rewardPerShare = _rewardPerShare;
 lastUpdateTime = _lastTimeRewardApplicable();
 }
...

6​ Immunefi Audits​ Immunefi / Layer3.xyz

​

means all the seconds the contract is at the beginning in a state where rewardPerShare is zero do not count

toward reward distribution. However, the calculation of rewardPerSecond assumes that rewards are being

distributed for every second of rewardsDuration. As a result, once periodFinish is reached, there will still be

undistributed rewards in the contract, even if all stakers have claimed their rewards.

The remaining amount becomes unclaimable and can only be recovered by the owner via

emergencyWithdraw.

Let's put some numbers to see how this would unfold:

●​ After contract deployment and initialization, periodFinish, rewardPerSecond, lastUpdateTime, and

totalRewards are zero.

●​ The owner calls setRewardAmount to set the variables above. To keep it simple, we assume

rewardsDuration is 3,600 seconds and the reward passed to setRewardAmount is 3,600e18.

●​ Also, for simplicity, assume block.timestamp = 0.

○​ Now: periodFinish = 3_600, rewardPerSecond = 1e18, lastUpdateTime = 0, and totalRewards

= 3_600e18.

●​ Until the last minute of the period, nobody stakes. So rewardPerShare remains 0 during this time.

Alice then stakes 10e18 with a zero lockup period. She gets a weight of 2.5e18, and total weights is

also 2.5e18.

○​ After the call, lastUpdateTime = 3_540 and rewardPerShare is still zero. The user's

pendingRewards is zero, and so is her rewardPerShareSnapshot.

●​ After periodFinish, Alice calls getReward. The call to _updateReward at the top sets:

○​ rewardPerShare = _timeSinceLastUpdate * rewardPerSecond * _BASE / totalWeights = (60

/ 2.5) * 1e18 = 24e18

○​ lastUpdateTime = 3_600

○​ Alice's pendingRewards = _staker.pendingRewards + _rewardsSinceSnapshot =

_staker.weight * _rateDifferenceSinceSnapshot / _BASE = 2.5e18 * 24e18 / 1e18 = 60e18

○​ Alice's rewardPerShareSnapshot = rewardPerShare = 2.5e18

After the call to getReward, totalRewards = 3_540e18.

In the end, the value of totalRewards includes an amount that is reserved for claiming but never will be, and

can only be recovered by a call to emergencyWithdraw.

This was an extreme example using convenient numbers to improve readability. In a real-world scenario, the

7​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

​

rewards corresponding to the time between the call to setRewardAmount and the first user staking would get

stuck in the contract.

Recommendation

Do not update the value of lastUpdateTime when _rewardPerShare is zero.​

...
- if (_rewardPerShare == 0 || _rewardPerShare > rewardPerShare) {
+ if (_rewardPerShare > rewardPerShare) {
 rewardPerShare = _rewardPerShare;
 lastUpdateTime = _lastTimeRewardApplicable();
 }
...

8​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

TypeScript

​

IMM-LOW-02
Function _increaseStake should revert when the calculated weight is zero #5

Id IMM-LOW-02

Severity LOW

Category Bug

Status
Fixed in
c24d86d5139d4e99687c96fa632c08e41d2c26ce

Description

Calls to _inscreasedStake should be disallowed when the calculated weight is zero, just as it is

implemented in the _stake function:

...
 if (_weight == 0) revert ZeroWeight();
...

This is an extreme case because it can only happen when staking a tiny amount (1 to 3 wei, depending on

the lockup period), but all the deposits that fall into this category would not yield rewards to the depositors,

as their weight would be zero.

Recommendation

Consider applying this fix:

 function _increaseStake(uint256 _index, uint256 _amount, address _user) internal {
 Deposit storage _deposit = deposits[_user][_index];

 if (_deposit.amount == 0) revert InvalidDepositIndex();
 if (_deposit.lockupPeriod > 0) revert CannotIncreaseLockedStake();
 if (_deposit.withdrawAt > 0) revert WithdrawalAlreadyInitiated();

9​ Immunefi Audits​ Immunefi / Layer3.xyz

​

 // Because the deposit is unlocked, we're calculating the weight with a lockup period of
0
 uint256 _weight = _calculateWeight(0, _amount);
+
+ if (_weight == 0) revert ZeroWeight();

Alternatively, consider computing the combined weight of the current position amount (which is already

checked to be nonzero) plus the increased amount.

10​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

TypeScript

​

IMM-LOW-03
Function listDeposits should not return deleted deposits #4

Id IMM-LOW-03

Severity LOW

Category Bug

Status Fixed in cbeefd1a9cf055ea6a08bcb912e7f24c08dd78d2

Description

Function listDeposits should not return deleted deposits, which are empty and are not actually deposits in

the first place.

...
 _list = new Deposit[](_batchSize);

 uint256 _index;
 while (_index < _batchSize) {
 _list[_index] = deposits[_user][_startFrom + _index];
 ++_index;
 }
...

The deposit's amount must be positive, otherwise it should not be included in the list.

Recommendation

Consider applying the following fix:

...
- uint256 _index;
- while (_index < _batchSize) {

11​ Immunefi Audits​ Immunefi / Layer3.xyz

​

- _list[_index] = deposits[_user][_startFrom + _index];
- ++_index;
- }
+ uint256 _batchIndex;
+ uint256 _index;
+ while (_batchIndex < _batchSize) {
+ Deposit memory deposit = deposits[_user][_startFrom + _batchIndex];
+ if (deposit.amount > 0) {
+ _list[_index] = deposit;
+ ++_index;
+ }
+ ++_batchIndex;
+ }
+ assembly { mstore(_list, _index) }
...

12​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

​

IMM-LOW-04
Deposits with an initiated withdrawal get a wrong value in calculateAPY #2

Id IMM-LOW-04

Severity LOW

Category Bug

Status Fixed in dfd5fa1683a8f378e7076d74a1250b705dcea76a

Description

When a user initiates a withdrawal calling initiateWithdrawal, the weight that corresponds to the deposit

is subtracted from the total weights through the inner call to _decreaseStake.

initiateWithdrawal:

https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/c

ontracts/Staking.sol#L193-L209

_decreaseStake:

https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/c

ontracts/Staking.sol#L500-L514

calculateAPY will return a higher APY value for such a deposit, because totalWeights is less than it should

be.

 function calculateAPY(address _user, uint256 _index) external view returns (uint256 _apy) {
 Deposit memory _deposit = deposits[_user][_index];
 uint256 _weight = _calculateWeight(_deposit.lockupPeriod, _deposit.amount);
 uint256 _rewardPerYear = rewardPerSecond * _12_MONTHS * _BASE * 100;

 _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * totalWeights);
 }

This could cause confusion to the user who initiated the withdrawal, who would see an inflated APY for that

13​ Immunefi Audits​ Immunefi / Layer3.xyz

https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L193-L209
https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L193-L209
https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L500-L514
https://github.com/layer3xyz/tge-contracts/blob/9d3616b27735e2ae9a00a7dd0a8dba7302bc18b8/src/contracts/Staking.sol#L500-L514

TypeScript

​

deposit.

Recommendation

Consider handling this special case:

 function calculateAPY(address _user, uint256 _index) external view returns (uint256 _apy)
{
 Deposit memory _deposit = deposits[_user][_index];
 uint256 _weight = _calculateWeight(_deposit.lockupPeriod, _deposit.amount);
 uint256 _rewardPerYear = rewardPerSecond * _12_MONTHS * _BASE * 100;
- _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * totalWeights);
+ if (_deposit.withdrawAt > 0){
+ _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * (totalWeights +
_weight));
+ }
+ else{
+ _apy = Math.mulDiv(_weight, _rewardPerYear, _deposit.amount * totalWeights);
+ }
 }

14​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

TypeScript

​

IMM-INSIGHT-01
Checks to return an empty list in listDeposits can be improved #3

Id IMM-INSIGHT-01

Severity INSIGHT

Category Informational

Status Fixed in d1d976878c2189099bf5b775efca613cb5852154

Description

Calls to listDeposits return early if the start index is greater than the total deposits:

...
 // Return an empty array if non-existent user or no deposits
 if (_startFrom > _totalDeposits) {
 return _list;
 }
...

This check is wrong, because the case where _startFrom == _totalDeposits should also return an empty

array. And also the case where _batchSize == 0 could be added to the if statement so that the function also

returns early in that case.

Recommendation

Consider the following fix:

...
- if (_startFrom > _totalDeposits) {
+ if (_startFrom >= _totalDeposits || _batchSize == 0) {
 return _list;

15​ Immunefi Audits​ Immunefi / Layer3.xyz

​

 }
...

16​ Immunefi Audits​ Immunefi / Layer3.xyz

TypeScript

​

IMM-INSIGHT-02
Misleading error message in initiateWithdrawal function #1

Id IMM-INSIGHT-02

Severity INSIGHT

Category Informational

Status Acknowledged

Description

There is a check in function initiateWithdrawal that makes sure lockupPeriod is zero:

 if (_deposit.lockupPeriod > 0) revert DepositLocked();

But the error thrown can be misleading for the caller, because a deposit with lockupPeriod greater than

zero but unlockAt <= block.timestamp is actually not locked, but would cause the revert anyway.

Note that the other places in the contract where the DepositLocked error is thrown, the condition to meet is

that deposit.unlockAt > block.timestamp.

Recommendation

Consider using a new error for this case.

17​ Immunefi Audits​ Immunefi / Layer3.xyz

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	
	IMM-LOW-01
	IMM-LOW-02
	
	
	
	
	IMM-LOW-03
	
	
	
	
	
	
	
	
	
	
	
	
	IMM-LOW-04
	
	
	
	
	
	
	
	
	
	
	
	
	IMM-INSIGHT-01
	IMM-INSIGHT-02

