IMMUNEFI AUDIT

€3 Immunefi / plume

DATE | July 14, 2625

AUDLTOR_ Bloqkian,,Security Researchers . -

' EPORT BY Immunefl ;

— About Immunefi
‘Terminology ~ . °
Executive Summary
_ A_udlt_ 1_- Findings
Audit 2 - Findings

S

S

@ Immunefi

ABOUT IMMUNEFI
TERMINOLOGY
EXECUTIVE SUMMARY

AUDIT 1
AUDIT 2

AUDIT 1 - FINDINGS

IMM-CRIT-01
IMM-CRIT-02
IMM-CRIT-03
IMM-CRIT-04
IMM-CRIT-05
IMM-CRIT-06
IMM-CRIT-07
IMM-CRIT-08
IMM-CRIT-09
IMM-CRIT-10
IMM-CRIT-11
IMM-CRIT-12
IMM-CRIT-13
IMM-CRIT-14
IMM-HIGH-01
IMM-HIGH-02
IMM-HIGH-03
IMM-HIGH-04
IMM-HIGH-05
IMM-HIGH-06
IMM-MED-01
IMM-MED-02
IMM-MED-03
IMM-MED-04
IMM-MED-05
IMM-MED-06
IMM-MED-07
IMM-MED-08
IMM-MED-09
IMM-LOW-01
IMM-LOW-02

Immunefi Audits

Immunefi / Plume Network

© 000 o o O, b

1
12
14
16
19
21

23

24

26
27

29
31

33

34

35

36
38

40
41

42

43

44

46

48

49

50

52

53

55

(@)

@ Immunefi

IMM-LOW-03
IMM-INSIGHT-01
IMM-INSIGHT-02
IMM-INSIGHT-03
IMM-INSIGHT-04
IMM-INSIGHT-05
IMM-INSIGHT-06
IMM-INSIGHT-07
IMM-INSIGHT-08
IMM-INSIGHT-09
IMM-INSIGHT-10
IMM-INSIGHT-11
IMM-INSIGHT-12
AUDIT 2 - FINDINGS
IMM-CRIT-01
IMM-CRIT-02
IMM-CRIT-03
IMM-CRIT-04
IMM-CRIT-05
IMM-CRIT-06
IMM-HIGH-01
IMM-HIGH-02
IMM-MED-01
IMM-MED-02
IMM-MED-03
IMM-LOW-01
IMM-LOW-02
IMM-LOW-03
IMM-LOW-04
IMM-LOW-05
IMM-LOW-06
IMM-LOW-07
IMM-LOW-08
IMM-LOW-09
IMM-INSIGHT-01
IMM-INSIGHT-02
IMM-INSIGHT-03
IMM-INSIGHT-04

3 Immunefi Audits

Immunefi / Plume Network

56
57
58
60
61
62
63
66
67
68
69
70
71
72
72
73
74
75
76
7
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
93
94
95
96

@ Immunefi

IMM-INSIGHT-05
IMM-INSIGHT-06
IMM-INSIGHT-07
IMM-INSIGHT-08
IMM-INSIGHT-09
IMM-INSIGHT-10
IMM-INSIGHT-11
IMM-INSIGHT-12

Immunefi Audits

Immunefi / Plume Network

97
98
99
100
101
102
103
105

@ Immunefi

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than
$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing
over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a
single command center to more than 300 projects — including Sky (formerly MakerDAO), Optimism,
Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,
AAVE, ZKsync, Morpho, Ethena, USDTO, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,
Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi’'s market leading products
and community of elite security researchers with a curated set of the very best security products and
technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus
Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi's proprietary vulnerabilities dataset — the largest and most
comprehensive in web3, ensuring that security leaders and teams have the best possible tools for
identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational

overhead and complexity.

Learn how you can benefit too at immunefi.com.

5 Immunefi Audits Immunefi / Plume Network

@ Immunefi

TERMINOLOGY

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

- Likelihood represents the likelihood of a finding to be triggered or exploited in practice

- Impact specifies the technical and business-related consequences of a finding

- Severity is derived based on the likelihood and the impact
We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.
LIKELIHOOD IMPACT
MEDIUM
CRITICAL
HIGH
MEDIUM Medium Medium
LOW Low
NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely checked,
regardless of severity.

6 Immunefi Audits Immunefi / Plume Network

@ Immunefi

EXECUTIVE SUMMARY

Immunefi conducted two comprehensive audits of Plume Network’s contracts repository between April
24th and June 3rd. Across both audits, 76 issues were identified.

SUMMARY
Name Plume Network
Repository https://github.com/plumenetwork/contracts
Audit Commit f5332b2bbcc9f4a58ac818785ed11762968d5610
Type of Project Stablecoin, RWA, Blockchain
L phonizan- e o
Fix Period June 7th - July 9th
AUDIT 1
ISSUES FOUND
Severity Count Fixed Acknowledged
Critical 14 13 1
High 6 6 0
Medium 9 8 1
Low 3 1 2
Insights 12 9 3
CATEGORY BREAKDOWN
Bug 32
Gas Optimization 0
Informational 12

7 Immunefi Audits Immunefi / Plume Network

https://github.com/plumenetwork/contracts

@ Immunefi

AUDIT 2
ISSUES FOUND
Severity Count Fixed Acknowledged
Critical 6 6 0
High 2 2 1)
Medium 3 3 0
Low 9 6 0
Insights 12 8 4
CATEGORY BREAKDOWN
Bug 23
Gas Optimization 3
Informational 6

Immunefi Audits

Immunefi / Plume Network

@ Immunefi

AUDIT 1 - FINDINGS

IMM-CRIT-01
Token Creator Can Upgrade ArcToken Implementation #33

Id IMM-CRIT-01

Category Bug

Status Fixed in 20814d1b32321e2d1d26ff2e20239a79712714a5
Description

(OJe [WA\ {Ieit=leMlA rcTokenFactory . sol: : createToken

When a new ArcToken is created using the createToken function, the UPGRADER_ROLE is granted to the
msg.sender (the token creator):

None
token.grantRole(token.UPGRADER_ROLE(), msg.sender);

This allows the token creator to call on the contract, giving them full control
over the token's implementation. As a result, the creator can upgrade the ArcToken contract at any time,
bypassing the intended control of the ArcTokenFactory and potentially introducing malicious logic or
vulnerabilities.

This undermines the security and trust assumptions of the ArcTokenFactory, as upgrades can occur without
factory or governance oversight.

Recommendation

Grant the to the ArcTokenFactory contract instead of the token creator.

9 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-02
Unbounded Array Iteration in Yield Distribution Can Lead to No Yield Distribution #32

Id IMM-CRIT-02

Severity

Category Bug

Status Acknowledged
Description

O%ele [CWAVI{=Toit=TeH ArcToken.sol::distributeYieldldistributeYieldWithLimi tRJCVAE\VATIVIsle3ule]plS

BlejfaldistributeYieldRiUaleiflolal(distributeYieldElleldistributeYieldWithl imi t| BRI RN IS\ W
functions in [IRIITCIEIN, iterate over the entire [J{HITTIE array to determine RTISIRITIT T JOb.

Since the FIILEE array is not bounded in size, if there are a large number of holders, these functions may
revert due to exceeding the block gas limit.
Recommendation

e Avoid iterating over unbounded arrays in public or external functions.
e Consider using a mapping or checkpointing mechanism to track supply and yield distribution
efficiently.

10 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-03
No Protection in Token Purchase Can Result in Theft of Funds from
Buyers #31

Id IMM-CRIT-03

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Ofele[SWAI IR EoMlA rc TokenPurchase . sol : : buy

The buy function in does not include a parameter. This omission allows the
seller to frontrun a buy transaction and manipulate the price, resulting in the buyer receiving fewer tokens
than expected.

There are two main ways the seller can manipulate the outcome:
1. The seller can frontrun a [§il} transaction with an transaction and set a new price,
causing the buyer to receive less than the expected amount.
2. The seller can frontrun a [transaction with an transaction on the itself,
changing the decimals and thus altering the calculation of IR VIRt

For example:

TypeScript
uint8 tokenDecimals = token.decimals(); // Get decimals dynamically
uint256 scalingFactor = 10 ** tokenDecimals;

// Calculate ArcToken base units to buy, assuming tokenPrice is for 1 full ArcToken (scaled

by its decimals)
uint256 arcTokensBaseUnitsToBuy = (_purchaseAmount * scalingFactor) / info.tokenPrice;

Both and can be manipulated by the seller, impacting the buyer's received
amount.

11 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Recommendation

Add a parameter to the Il function to protect buyers from receiving fewer tokens than
expected due to price or decimal manipulation.

12 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-04
Users Can Spin Multiple Times Before Randomness Callback #23

Id IMM-CRIT-04

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Code Affected: iR -1 g s ei1y

TypeScript
modifier canSpin() {

uint256 _lastSpinTimestamp = userDataStorage.lastSpinTimestamp;

// Retrieve last spin date components

(uint16 lastSpinYear, uint8 lastSpinMonth, uint8 lastSpinDay) = (
dateTime.getYear(_lastSpinTimestamp),
dateTime.getMonth(_lastSpinTimestamp),
dateTime.getDay(_lastSpinTimestamp)

)

// Retrieve current date components
(uint16 currentYear, uint8 currentMonth, uint8 currentDay) =
(dateTime.getYear(block.timestamp), dateTime.getMonth(block.timestamp),
dateTime.getDay(block.timestamp));

// Ensure the user hasn't already spun today
if (isSameDay(lastSpinYear, lastSpinMonth, lastSpinDay, currentYear, currentMonth,
currentDay)) {
revert AlreadySpunToday();

13 Immunefi Audits Immunefi / Plume Network

@ Immunefi

The IENSRIFNEREL iS validated against the current day, but, IESSIIEIER®ENT iS only updated after the

randomness callback is received from Supra.

This allows users to call multiple times before the callback is processed, resulting in multiple
concurrent spins on the same day for the same user.

Recommendation

Update TETR TR ITIEIS as SOoN as is called, not after the callback.

14 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-05
Looping over unbounded arrays - Multiple issues including slashing evasion #11

Id IMM-CRIT-05

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Code Affected: Multiple locations

Several functions across the staking system iterate over arrays whose lengths are not explicitly bounded.

This practice can lead to excessive gas consumption and, in some cases, cause the function to revert due
to block gas limits. In some scenarios, malicious actors or even regular users can exploit these unbounded
loops to prevent critical protocol actions, such as slashing, unstaking, or claiming rewards.

Below is a summary of the most significant unbounded loops, ranked by severity:

1. ValidatorFacet.sol::slashValidator

CRITICAL — Iterates over FVEISGEIIEGE, EENEIR SN, and SAVEIST IS EIES. Since

$.validatorStakers can be manipulated by anyone (anyone can stake), a malicious validator could
inflate this array to prevent themselves from being slashed.

2. PlumeValidatorLogic.sol::removeStakerFromValidator
MEDIUM — lterates over all JEIRREITI@IEIENS to pop a staker. If the array is too large, honest users
may be unable to unstake.

3. RewardsFacet.sol

a. lterates over all EVEIRKEIL Il and ENEEIR ARGl

b. MEDIUM: May prevent adding or removing reward tokens.
c. INSIGHT: Can cause or EIRIGTY) to fail, though normal claims still work.

4. StakingFacet.sol::restakeRewards
LOW — Iterates over all IIREIRLETa8, which is user-controlled. Excessive entries may cause

15 Immunefi Audits Immunefi / Plume Network

@ Immunefi

7

user-initiated failures.

PlumeRewardLogic.sol::updateRewardsForValidator
INSIGHT — Iterates over all (protocol-controlled), so risk is minimal.

ManagementFacet.sol::adminCorrectUserStakelnfo

INSIGHT — Iterates over all for a single user. If it reverts, it only affects syncing of
stakelnfo and N EIRL LSRG, Which is not a real problem since and

are synced anyways.

ValidatorFacet.sol::_updateRewardsForAllValidatorStakers
INSIGHT — Iterates over all|FJ i EEIR e T a, but this function already reverts if the array is
bigger than 100 (see IMM-CRIT-09).

Recommendation

Avoid iterating over unbounded arrays wherever possible. Use mappings and checkpointing
mechanisms to track state efficiently.

If iteration over an array is unavoidable, enforce a strict upper bound (e.g., 100 elements) on the
array's length. Always check the array length before allowing new entries.

16 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-06
Reward Distribution Is Unrelated to Amount Added With #9

Id IMM-CRIT-06

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(®fele WAV i{-Toi-leMRewardsFacet . sol : : addRewardsl_transferRewardFromTreasury

The amount of rewards distributed to users is not actually limited or affected by the amount added via

ERBRENEIRE. When eLLREIEIRE is called, the amount is used to increment the [ENEIGHYEEDEE variable:

TypeScript

function addRewards(

address token,
uint256 amount

) external payable virtual nonReentrant onlyRole(PlumeRoles.REWARD_MANAGER_ROLE) {

17

PlumeStakingStorage.Layout storage $ = plumeStorage();
if (!$S.isRewardToken[token]) {
revert TokenDoesNotExist(token);

address treasury = getTreasuryAddress();
if (treasury == address(0)) {
revert TreasuryNotSet();

// Check if treasury has sufficient funds - direct balance check
if (token == PLUME) {
// For native PLUME, check the treasury's ETH balance
if (treasury.balance < amount) {
revert InsufficientBalance(token, treasury.balance, amount);
}
} else {
// For ERC20 tokens, check the token balance

Immunefi Audits Immunefi / Plume Network

@ Immunefi

uint256 treasuryBalance = IERC20(token).balanceOf(treasury);
if (treasuryBalance < amount) {
revert InsufficientBalance(token, treasuryBalance, amount);

uint16[] memory validatorIds = $.validatorIds;

for (uint256 i = @; i < validatorIds.length; i++) {
// Use library function to update validator cumulative index
PlumeRewardLogic.updateRewardPerTokenForValidator($, token, validatorIds[i]);

// Only update the accounting - actual funds remain in the treasury
S.rewardsAvailable[token] += amount;
emit RewardsAdded(token, amount);

However, [fNEIRHYEMEDEE is not enforced as a limit when transferring rewards to users nor does it change
the actual amount of rewards. The actual transfer logic is as follows:

TypeScript
function _transferRewardFromTreasury(address token, uint256 amount, address recipient)
internal {
address treasury = getTreasuryAddress();
if (treasury == address(0)) {
revert TreasuryNotSet();

// Make the treasury send the rewards directly to the user
IPlumeStakingRewardTreasury(treasury).distributeReward(token, amount, recipient);

// Update accounting

PlumeStakingStorage.Layout storage $ = plumeStorage();

S.rewardsAvailable[token] = ($.rewardsAvailable[token] > amount) ?
S.rewardsAvailable[token] - amount : 9;

}

If the amount transferred is greater than [gEIRINEMREINNE, the transfer will simply continue as normal and
zero out [ENEIRHINEMEISNE so it has no effect on the actual rewards calculation nor does it prevent rewards

18 Immunefi Audits Immunefi / Plume Network

@ Immunefi

bigger than JNEIRHNEMREINNE from being transferred.

Recommendation

e Review all reward calculation logic to use the actual amount of rewards available via

rewardsAvailablel

e Prevent transfers of rewards that would cause [fIEIESVYEMEIIRE to go below zero.

19 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-07
No Rewards Accrued Due to Zero Validator Stake #8

Id IMM-CRIT-07

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(Ofele [WAV =TT MlP 1 umeRewardlLogic. sol: : updateRewardPerTokenForValidator

The YEIRKEIJ g EEIge AR CHIM IEYSAYE Value is always zero because it depends on

SR EY KT A L YR =T CLIREIR R EYeY@lell|, Which is never incremented and remains at zero. As a result, the
reward calculation logic never updates the cumulative reward per token:

TypeScript
uint256 totalStaked = $.validatorTotalStaked[validatorId];
if (totalStaked > 0) {
uint256 lastUpdate = $.validatorLastUpdateTimes[validatorId][token];
if (block.timestamp > lastUpdate) {
uint256 timeDelta = block.timestamp - lastUpdate;
uint256 effectiveRate = $S.rewardRates[token];
if (effectiveRate > 0) {
uint256 numerator = timeDelta * effectiveRate * REWARD_PRECISION;
uint256 reward = numerator / totalStaked;
S.validatorRewardPerTokenCumulative[validatorId][token] += reward;

}
$.validatorLastUpdateTimes[validatorId][token] = block.timestamp;

Since [YEINELEL is always zero, the update block is never executed, and no rewards are ever accrued for
any validator or staker.

20 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Recommendation

o Ensure that FYEIIE I EI I LI ECIREIREYLIQEN| is correctly updated whenever users stake is

updated, so that rewards can be properly accrued and distributed.
e Review all staking and reward logic to maintain consistency between stake tracking and reward
calculations.

21 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-08
Slashing Reverts Due to being O #7

Id IMM-CRIT-08

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(ool W Ni=l3=ellVal idatorFacet . sol: :slashValidator

The global staking total, I EINELEE, iS never incremented and remains at zero. If a nonzero
UEIRAZNIV[Yd is ever calculated during slashing, the following code will revert due to an underflow:

TypeScript
uint256 penaltyAmount = $.validatorTotalStaked[validatorId];
if (penaltyAmount > 0) {
$.totalStaked -= penaltyAmount; // Underflows and reverts if $.totalStaked is ©
S.validatorTotalStaked[validatorId] = 0;
address[] storage stakers = $.validatorStakers[validatorId];
for (uint256 i = @; i < stakers.length; i++) {
S.userValidatorStakes[stakers[i]][validatorId].staked = 0;

Because AJEINEIEL is zero, subtracting any positive [JEINZAIeNY Will cause an underflow and revert
the transaction, preventing slashing from executing as intended.

Since currently is always O, this issue is not currently exploitable. But it can be exploited in
the future and needs to be addressed.

Recommendation

Ensure that T IEINELES iS correctly incremented whenever users stake, so it accurately reflects the total

22 Immunefi Audits Immunefi / Plume Network

@ Immunefi

staked amount across all validators.

23 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-09
Slashing Does Not Burn Staked Funds Due to Zeroed Validator Total #6

Id IMM-CRIT-09

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(ool W Ni=l3=ellVal idatorFacet . sol: :slashValidator

The core slashing functionality is ineffective because FIREIREIX IR IR L CLINEIS Eld gl is always zero

(there is no place where it's incremented) when EHNEIRLELs is called. As a result, the calculated
is zero, and the code that zeroes out individual user stakes is never executed:

TypeScript
uint256 penaltyAmount = $.validatorTotalStaked[validatorId];
if (penaltyAmount > 0) {
$.totalStaked -= penaltyAmount;
$.validatorTotalStaked[validatorId] = ©;

address[] storage stakers = $.validatorStakers[validatorId];

for (uint256 i = @; i < stakers.length; i++) {
S.userValidatorStakes[stakers[i]][validatorId].staked = 0;

Because is always zero, the intended penalty — burning all staked funds for the slashed
validator — is never applied, and user stakes remain untouched.

Recommendation

Increment SYEIRL EfI g AR NEN STt Idfell| every time userValidatorStakes is updated.

24 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-10
Uninitialized Reward Timestamp Allows Excessive Reward Claims for New Validators

and Draining [Nl ST EEI g N gL #5

Id IMM-CRIT-10

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(O1o [WA\ {loi=leMlValidatorFacet . sol: :addValidatorlPlumeRewardLogic: : updateRewardPerTokenForvValidator]

When a new validator is added via ELLIEIRELR]s, the contract does not initialize the
VEXRE EX X =TS AN EXRY Bl Mmapping for the new validator and each reward token.

As a result, when I R R IR R BL Eaes is called for the first time, the is calculated

from block timestamp to the default value of zero (the Unix epoch), resulting in an excessively large

timeDeltaltimeDelta = block.timestamp - O)f

TypeScript
uint256 lastUpdate = S.validatorlLastUpdateTimes[validatorId][token];
if (block.timestamp > lastUpdate) {
uint256 timeDelta = block.timestamp - lastUpdate; // block.timestamp - ©
uint256 effectiveRate = $.rewardRates[token];
if (effectiveRate > 0) {
uint256 numerator = timeDelta * effectiveRate * REWARD_PRECISION;
uint256 reward = numerator / totalStaked; // the reward will be huge
S.validatorRewardPerTokenCumulative[validatorId][token] += reward;

This results in a huge [T IR I AL IR E, allowing users to claim rewards as if the validator
had existed since timestamp zero. This can lead to users draining all available reward funds from the

protocol. Draining [N S EIg I gV

25 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Recommendation

IN ELGNYEIRNEYR]s, ensure that YEIRKEIRIa e dl S EAABIIEYN iS set to the current block timestamp for each

reward token when a new validator is added.

26 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-11
Slashing Penalty Evasion via Commission Claim #4

Id IMM-CRIT-11

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(ool LW Nil=eizellValidatorFacet.sol: :claimValidatorCommission

A malicious validator can frontrun a slashing transaction by calling immediately
before being slashed. This allows the validator to withdraw their commission rewards before their balance
is zeroed out, effectively evading the intended penalty and reducing the effectiveness of the slashing
mechanism.

Recommendation

e |Implement a cooldown period for [HEMUEIETEite g Kol FEFFely) requests.

e Ensure the slashing vote duration is strictly shorter than the cooldown period, otherwise the
malicious validator can claim their commission before the slashing vote is finalized.

27 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-12
Stakers Can Bypass Slashing #3

Id IMM-CRIT-12

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Ofele [SWAVI-Ti oIS t ak ingFacet. sol: :unstakelValidatorFacet.sol: :slashValidator

Stakers are currently able to evade slashing penalties by frontrunning the SENEISEIRy function or by
noticing the slashing vote before it is finalized. Once a slashing vote is initiated or even detectable
on-chain, users have a window of opportunity to call I egs Which moves their funds into the
state:

TypeScript
amountUnstaked = amount > info.staked ? info.staked : amount;

// ... unrelevant code for this issue ...
S.validators[validatorId].delegatedAmount -= amountUnstaked;
// ... unrelevant code for this issue ...

globalInfo.cooled += amountUnstaked;

Because slashing currently does not affect funds that are cooling down, users can effectively protect their
stake from being slashed by quickly unstaking during or immediately after a slashing vote starts, as long as

they before IETINCIEREIas iS called.

Recommendation

1. Introduce a new storage mapping similar to SIS I g1 ER, such as
SRR X a el BNgYsy. tO track cooldown balances on a per-validator basis.

28 Immunefi Audits Immunefi / Plume Network

@ Immunefi

2. During [ENG record the unstaked amount into this new mapping instead of marking it as globally

cooled.
3. Modify SERNEIREIRs to also reduce funds from the [HIREIRLEIRI IR} mapping associated

with the slashed validator.

The last recommendation is very important:

4. Ensure the slashing vote duration is strictly shorter than the cooldown period, otherwise users will
be able to unstake and get their funds back before the slashing vote is finalized.

29 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-13
Incorrect Reward Accounting Allows Multiple Claims #2

Id IMM-CRIT-13

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(O%ele WAV {Toin=TeMIRcwardsFacet.sol: :claimllclaimAll

When a user claims rewards, the contract sets SHEREIREE I g G EIg AR ClEe to the current value of

VERRE EY o] o T TR R IV EY#AYS to track the latest reward per token amount claimed:

TypeScript
S.userValidatorRewardPerTokenPaid[user][validatorId][token] =
S.validatorRewardPerTokenCumulative[validatorId][token];

However, during reward calculation in [SEiRtEY 3L e S IFRd (6l gTYe el b ReY oS, i
VEIRL B ENE IR IR RGN $AY: is outdated, the function computes an up-to-date value locally (using
currentCumulativeIndex|JoliiRelelstRaleiM0[oloE\t-Risl-Rte]g=olvalidatorRewardPerTokenCumulativep

TypeScript
uint256 currentCumulativeIndex = $.validatorRewardPerTokenCumulative[validatorId][token];
uint256 lastUpdateTime = $S.validatorLastUpdateTimes[validatorId][token];
if (block.timestamp > lastUpdateTime && $.validatorTotalStaked[validatorId] > @) {
uint256 timeDelta = block.timestamp - lastUpdateTime;
uint256 effectiveRate = S.rewardRates[token];
if (effectiveRate > 0) {
uint256 numerator = timeDelta * effectiveRate * REWARD_PRECISION;
currentCumulativeIndex += numerator / $.validatorTotalStaked[validatorId];

30 Immunefi Audits Immunefi / Plume Network

@ Immunefi

As a result, the user's IR IS E g e VRIS iS set to the old, un-updated value. On subsequent
claims, the [EEIREIREICUDEIRE is calculated using this stale value, allowing users to repeatedly claim
additional rewards they are not entitled to.

Recommendation

Ensure that YEIRs It g ENEIRe XM RCRIMTIMIEYSAYRS is updated before any reward claim action, either by calling

Vol EY AR M R Ul IR Eidelg directly or by using a modifier to enforce this update.

31 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-14

Theft of Funds From RSN STl GENEIR A ERIRY # 1

Id IMM-CRIT-14

Severity

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

O LY N i S tak ingFacet . sol : : stakelrestakelstakeOnBehal fl

The staking functions do not update RIS EIteI g -NEIRe IR R U EMe When a user stakes. As a result, this
variable remains at its default value (zero), which causes the reward calculation to treat the user as if they
had been staked since the beginning of the reward period.

As a result, when the user immediately calls I, the reward calculation uses the default value (zero) for

userValidatorRewardPerTokenPaidy

TypeScript
uint256 lastPaidCumulativeIndex =
S.userValidatorRewardPerTokenPaid[user][validatorId][token];

uint256 rewardPerTokenDelta = currentCumulativeIndex - lastPaidCumulativeIndex; //
currentCumulativeIndex - ©

An attacker can exploit this by staking and then immediately calling , receiving the full accumulated
rewards they were never entitled to. They can then even immediately unstake — all in a single transaction,
putting no attacker funds at risk — and then repeat this process draining the @R EI ST NEIg LIgERIIRY-

Recommendation

LIS FYuserValidatorRewardPerTokenPaidElgleluserValidatorRewardPerTokenPaidTimestampElfs)

updated when staking.

32 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Better vet:

e Call before any staking action to ensure rewards are properly accounted
for.

e Consider abstracting this into a modifier or internal helper to enforce consistency across all
staking-related functions.

33 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-01
Changing Purchase Token Does Not Invalidate Existing Sales or Prices #35

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in
77d09cf9c18a25b3f82c0a4a83a908c5¢c99d355e

Description

(oL LW Ni=I=eMlA rcTokenPurchase. sol : : setPurchaseToken

The HAGOIRUEREESEN function in NEAE G EREI allows the purchase token to be changed. However,

changing the purchase token does not invalidate or update existing sales or prices, which may lead to
inconsistencies or unexpected behavior for sellers who have posted sales.

Recommendation

Ensure that changing the purchase token properly invalidates any existing sales or prices.

34 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-02
No Validation of Token Origin in #34

Id IMM-HIGH-02

Severity High

Category Bug

Status Fixed in c3acabfbc8fe626a9febda09619231302a76557¢
Description

(ool LW Ni=I e llA rcTokenPurchase. sol: :enableToken

When calling on the contract, there is no check to ensure that the token
being enabled was actually deployed by the factory and is a valid [YRSEae. The only check performed is
that the caller is the token admin:

TypeScript
modifier onlyTokenAdmin(
address _tokenContract

) A

address adminRoleHolder = msg.sender;

bytes32 adminRole = ArcToken(_tokenContract).ADMIN_ROLE();

if (!ArcToken(_tokenContract).hasRole(adminRole, adminRoleHolder)) {
revert NotTokenAdmin(adminRoleHolder, _tokenContract);

This check is insufficient, as anyone can deploy a contract with a function that always returns true,
allowing them to call SiEl Ik <=) and list fake or malicious tokens for sale.

Recommendation

e Add acheck in enableToken to ensure that the token was deployed by the official factory and is a

valid [STSEE.

e Maintain a registry of valid tokens deployed by the factory and verify against it before enabling a
token for sale.

35 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-03
Unused in Reward Probability Calculation #24

Id IMM-HIGH-03

Severity High

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Code Affected: NeiRiI N e =Yg RISl {ET oo
When determining the reward, the JEIMSSALIEEROI field in [fSIEIR g FISMRRSYY appears to be unused:

TypeScript
function determineReward(uint256 randomness, address user) internal view returns (string
memory, uint256) {
// ... non relevant code for this issue ...
uint256 jackpotThreshold = jackpotProbabilities[dayOfWeek];

if (probability < jackpotThreshold) { // no use of
‘rewardProbabilities. jackpotThreshold"
return ("Jackpot", jackpotPrizes[weekNumber]);

// ... non relevant code for this issue ...

As a result, the calculation for jackpot chances relies solely on JEldSJiddgelFIIRERRYE, Which is set to very
low values and does not reflect intended game dynamics.

Recommendation

e Either remove JESJIAldg=Flele if it is unnecessary, or ensure it is properly integrated into the
jackpot probability calculation.
e Review and adjust jackpot probability logic to match intended odds.

36 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-04
Reward Rate Updates Are Applied Retroactively #13

Id IMM-HIGH-04

Severity High

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(Ofele WAV =Tt leMRewardsFacet . sol : : setRewardRatesPlumeRewardlLogic. calculateRewardsWithCheckpoints

When the function is called to update the reward rate for a token, it does not update users'
values. As a result, when users later call SRy, the reward calculation
uses the new reward rate retroactively for the entire period since their last claim, rather than only for the
period after the rate was updated.

For reference, in JAEIEIg EIAEE .

TypeScript

for (uint256 j = @; j < validatorIds.length; j++) {
uint16 validatorId = validatorIds[j];
PlumeRewardLogic.updateRewardPerTokenForValidator($, token, validatorId);
PlumeRewardLogic.createRewardRateCheckpoint($, token, validatorId, rate);

}

S.rewardRates[token] = rate;

No update is made to users' SN EIIE g ENE g TR Gl Values, so the new rate is applied to all
unclaimed rewards, regardless of when they were accrued.

This can result in users receiving more (or less) rewards than intended, depending on whether the reward
rate was increased or decreased.

Recommendation

When updating the reward rate, ensure that users' reward accounting is updated so that the new rate only

37 Immunefi Audits Immunefi / Plume Network

@ Immunefi

applies to rewards accrued after the change.

This can be done in two ways:

1. Update all users' [HIREIS Ei el g NETRe TREEIEMe| to the current cumulative value before the rate
change (not recommended as it requires more gas and risks running out of gas for large numbers of
users)

2. Implement checkpoints for rewards calculations. This is the recommended approach.

38 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-05
Cannot Claim Accrued Rewards for Deactivated Tokens #12

Id IMM-HIGH-05

Severity High

Category Bug

Status Fixed in 59¢c81c5f2a52f89fbaled77bc3b37450f57d5097
Description

(O%ele WAV {Tein=TeMIRcwardsFacet . sol : : removeRewardTokenRewardsFacet.sol: :claimBclaimAll

When a reward token is deactivated via [gIERETEIR LG, the contract updates the reward state for that

token using (e EI IR IR CUIRIAFIB Eldely, ensuring that all rewards accrued up to that point are

properly accounted for:

TypeScript
function removeRewardToken(
address token
) external onlyRole(PlumeRoles.REWARD_MANAGER_ROLE) {
PlumeStakingStorage.Layout storage $ = plumeStorage();
if ('S.isRewardToken[token]) {
revert TokenDoesNotExist(token);

// Find the index of the token in the array
uint256 tokenIndex = _getTokenIndex(token);

// Update rewards using the library before removing
for (uint256 i = @; i < $.validatorIds.length; i++) {
// Needs to update the cumulative index, not user rewards
PlumeRewardLogic.updateRewardPerTokenForValidator($, token, $S.validatorIds[i]);
}

S.rewardRates[token] = 9;

// Update the array
$.rewardTokens[tokenIndex] = $.rewardTokens[$.rewardTokens.length - 1];

39 Immunefi Audits Immunefi / Plume Network

@ Immunefi

S.rewardTokens.pop();

// Update the mapping
S.isRewardToken[token] = false;

delete $.maxRewardRates[token];
emit RewardTokenRemoved(token);

However, after deactivation, iIENIEIR IR CHIRTIERN| is set to false. As a result, any attempt to claim
rewards for the deactivated token will revert, since all claim functions check this flag:

TypeScript
function claim(address token, uint16 validatorId) external nonReentrant returns (uint256)
PlumeStakingStorage.Layout storage $ = plumeStorage();

if (!S.isRewardToken[token]) {
revert TokenDoesNotExist(token);

This prevents users from claiming rewards they rightfully earned before the token was removed.

Recommendation

e Allow users to claim any accrued rewards for tokens that have been deactivated, even after

removeRewardTokenfiXerzI1=1eh

e Consider tracking a separate state for "historical" reward tokens that allows claims but prevents
new rewards from accruing.

40 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-06
Unbounded Staker Count Can Prevent Validator Commission Claims #10

Id IMM-HIGH-06

Severity High

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(ool LW Nil=eizellValidatorFacet.sol: :claimValidatorCommission

The [FEMNEIREIt e liBFFRely function allows validators to claim their commission rewards. However, if a
validator has more than 100 stakers, this function will revert due to its reliance on the underlying

VoL EYLENEIR I YRR RN FYIgN =GRS function, which contains the following check:

TypeScript
if (stakers.length > 100) {
revert TooManyStakers();

Currently, there is no restriction on the number of stakers that can delegate to a validator — only a limit on
the total delegated amount (IR EISRE)- This means a validator can accumulate more than 100 stakers,
after which it becomes impossible to claim commission rewards, effectively bricking the validator's
commission functionality.

Recommendation

e |n general, avoid iterating over unbounded arrays, as this can lead to reverts due to gas limitations
and denial of service.

e [mplement a mechanism such as working checkpoints to track rewards without requiring iteration
over the entire stakers array.

e |[f iteration is unavoidable, enforce an upper bound (e.g., 100) on the number of stakers per validator
by checking the array length before allowing new stakers to join.

41 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-01
Seller Does Not Receive Revenue from ArcToken Sales #37

Id IMM-MED-01

Severity Medium

Category Bug

Status Acknowledged
Description

(Ofele[SWANIZIitzIeB ArcTokenPurchase.sol: :buy

When an is bought, the seller does not receive the revenue from the sale. Instead, the buyer's
tokens are transferred to the ISR CUIHNEIERE contract itself, rather than being forwarded to the intended
seller or beneficiary.

The only functions to withdraw tokens from the contract are controlled by the

INRAE I CHBITERE admin and not the token seller.

This results in the seller not being compensated for the tokens sold, and the funds remaining locked in the
contract.

Recommendation

Ensure that, upon purchase, the payment is correctly forwarded to the seller or designhated beneficiary.

42 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-02
Unsold ArcToken Withdrawal Restricted to Contract Admin #36

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 57595d2¢c983af9db583cc48b52aac5339afladbe
Description

(ool [SWNi=I e llA rcTokenPurchase. sol: :withdrawUnsoldArcTokens

The Rl TRl /AR T function in [NEAECIEAER: iS only callable by the contract admin, not by

the admin. This restricts the ability to withdraw unsold [YRIRIHE, potentially preventing the
admin from managing their own token supply after a partial sale.

Recommendation

e Provide a mechanism for the admin to withdraw unsold [IRSI .
e In general, provide a mechanism for the admin to manage their token sale (such as setting

to (SRR eto).

43 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-03

Missing [N EIENNd Enforcement in [EEELCRENEIRH #20

Id IMM-MED-03

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Ofele [SWAVI-TRIe IS t ak ingFacet. sol: : restakeRewards

The function does not enforce the constraint for validators. As a result,
users can restake rewards that are less than the minimum stake amount, bypassing the restriction that is
properly enforced in other staking functions such as stake, restake, and eSO EIR].

Recommendation

e Add a validation check in to ensure that the amount being restaked is greater than

or equal to eI NIV als.

e Refactor staking-related functions to share core logic.

44 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-04
Single Admin Can Only Vote With One Validator Due to Mapping Overwrite #19

Id IMM-MED-04

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(O%ele [SWAI{Teir=TeMlV a1 idatorFacet.sol: :addValidatorfValidatorFacet.sol: :voteToSlashValidator

The ELINEIREE]s function does not check whether Els il N NN 1t @ R IRWIX WV [IFH| iS already set.

This allows the same admin address to be assigned to multiple validators. However, each new assighment

overwrites the previous mapping.

This has a critical impact on the slashing process. The Rt ENNEIREIHe]g function relies on the
IS it gfel Mapping to determine the identity of the voting validator:

TypeScript
address voterAdmin = msg.sender;
uint16 voterValidatorId = $.adminToValidatorId[voterAdmin];
/] ...
if ($.validators[voterValidatorId].12AdminAddress != voterAdmin ||
IS.validators[voterValidatorId].active) {
revert NotValidatorAdmin(voterAdmin);
}
if (voterValidatorId == maliciousValidatorId) {
revert CannotVoteForSelf();

If an honest admin controls multiple validators, they will only be able to vote using one of their validators,

not all of them. This prevents unanimity from being reached in RENNEIM]y, potentially allowing a
malicious validator to evade slashing.

45 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Recommendation

N ELGNEIREEYH]s, check that ELiME)EIREX It IRB X[FR YN e [d=FFH| iSs NOt already set to prevent assigning the

same admin to multiple validators.
Or alternatively, allow multiple validators per admin, maybe via a mapping new ElisiiE\ s e EYd @l S
address => uint16[] array.

oondeTH

46 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-05

Users Lose Rewards When Calling #18

Id IMM-MED-05

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Ofele [SWAVI-TRIe IS t ak ingFacet. sol: : restakeRewards

During the process, the function retrieves the pending reward delta using
G ENEI [RIAEIB Eldely, but then zeroes out the entire reward balance for the user, causing users to
lose any previously accrued (but unclaimed) rewards:

TypeScript

uint256 validatorReward =

RewardsFacet(payable(address(this))).getPendingRewardForValidator(msg.sender,

userValidatorId, token);

if (validatorReward > 0)

amountRestaked += validatorReward;

PlumeRewardLogic.updateRewardsForValidator($, msg.sender, userValidatorId);

S.userRewards[msg.sender][userValidatorId][token] = 0; // Zero out the entire reward

balance without using it for restaking

emit RewardClaimedFromValidator(msg.sender, token, userValidatorId, validatorReward);

As a result, any rewards accrued prior to the current delta are lost when a user calls [O D eh.

Recommendation

Ensure that all unclaimed rewards (not just the current delta) are included when restaking, so users do not

47

Immunefi Audits Immunefi / Plume Network

@ Immunefi

lose previously accrued rewards.

48 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-06
Validator Commission Rate Can Be Set to 100% #17

Id IMM-MED-06

Severity Medium

Category Bug

Status Fixed in
a192bbcdc4009c3f48d23d2840a99695785b6031

Description
(OfeTe [SWNICI TV al idatorFacet . sol: :setValidatorCommission

MValidatorFacet.sol::addValidaton

There is currently no restriction preventing a validator's commission rate from being set to 100%. Both the
ElNEIRRe Yoy and SIAEIRR ERHI gk REFRelg| fuNctions allow any value up to and including 100% (represented

as [I3P), meaning a validator can claim all rewards for themselves and leave stakers with nothing.

If the commission rate is set to 100%, users who stake with that validator will not receive any rewards and
thus the validator won't receive any rewards either (since the commission is taken only when the user
claims their rewards and the reward is not O).

Recommendation

Impose an upper limit on the validator commission rate (e.g., less than 100%, for example 30%) in both

addValidatorjglglelsetValidatorCommission

49 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-07
Slashed Validators Are Still Useable In the Protocol #16

Id IMM-MED-07

Severity Medium

Category Bug

Status Fixed in 3d899831cf556f4d7d3311f830c439d0fa6f2b16
Description

Code Affected: Multiple locations (e.g., Nl PRI BRI =116

ValidatorFacet.sol::claimValidatorCommission

After a validator is slashed, its status is set t0 JEIRKEIISIEF I BEIRARIE aNd YEIETE it I gi-{os S A -BEIR F- U R-1=.

However, many protocol functions do not consistently check whether a validator is slashed or inactive
before allowing further actions.

For example:

Users can still stake a slashed validator, even though it is no longer considered active.

A slashed validator can still call and withdraw accrued commission rewards.
This undermines the intended consequences of slashing and can lead to unexpected or insecure protocol
behavior.

Recommendation

e Ensure that all functions which interact with validators (such as staking, claiming rewards, or
updating validator data) include checks to prevent actions involving slashed or inactive validators.

e Consider centralizing these checks in modifiers or internal helpers to enforce consistent validation
across the codebase.

50 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-08
Temporary Slashing Evasion via Admin Assignment #15

Id IMM-MED-08

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(ool [W NIz zellValidatorFacet.sol: :setValidatorAddresses

The HEAEIRLEWMAFN LI =N function allows updating a validator's admin address without verifying that the

EIRIX YN e IgFES has consented to this role. If the QRIS is already the admin of another

validator, this operation will overwrite the adminToValidatorld mapping.

This has a critical impact on the slashing process. The function relies on the
mapping to determine the identity of the voting validator. A malicious validator can
assign another validator's admin as their own, preventing that admin from voting to slash the malicious
validator due to the following check:

TypeScript
address voterAdmin = msg.sender;
uint16 voterValidatorId = $.adminToValidatorId[voterAdmin];

/1 ...

if (voterValidatorId == maliciousValidatorId) {
revert CannotVoteForSelf();

This prevents unanimity from being reached in HEMNEIELRy, effectively allowing the malicious validator
to evade slashing.

Since the victim admin can restore their voting rights by reassigning their admin address through an
intermediate step, this issue is not critical.

51 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Recommendation

Require explicit consent from the S/l faFF before assigning them as a validator admin. This can
be achieved by requiring a signature from the new admin or by implementing an function that
the new admin must call to confirm the assignment.

52 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-09

Missing EXOETEIERRY Enforcement in [§IIERCRENEIRN #14

Id IMM-MED-09

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Ofele [SWAVI-TRIe IS t ak ingFacet. sol: : restakeRewards

The function does not enforce the constraint for validators. As a result, users
can restake rewards and exceed the intended maximum delegation limit for a validator, bypassing the
restriction that is properly enforced in other staking functions such as stake, restake, and FEREOIELEIRT.

Recommendation

e Add a validation check in to ensure that if is not zero, the new
delegated amount does not exceed [N ISR
e Refactor staking-related functions to share core logic.

53 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-01
Restriction Contracts Are Not Used as Upgradeable Proxies #39

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in 23bd73bde60fe5aef38d383f492deelcb7b24d86
Description

Ofele [WAI=T e MlA rcTokenFactory . sol: :createToken

YieldBlacklistRestrictions.sol

When creating a new token, the [NEARIERIFIAIRY also creates new instances of [N E A taate gl and
S s oAt as upgradeable proxies. However, the contract uses the

implementation contracts directly, rather than deploying and interacting with proxy instances.

As a result, the implementation contracts are initialized and used directly. Due to the modifier
from [SENVJAELEEIIRS. upgrade attempts on the implementation contracts will revert:

TypeScript
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() '= __self // Must be called through an active proxy
) A

revert UUPSUnauthorizedCallContext();

Since the implementations are not used as proxies, the Il function will revert due to the

address(this) == __self check

Recommendation

Use upgradeable proxies for the RIS aEdgtestolsl AN \ETIke ST ARRF A A gReadlelsls instances as

54 Immunefi Audits Immunefi / Plume Network

@ Immunefi

intended.

55 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-02
Distributor Can Direct Yield to Specific Holders #38

Id IMM-LOW-02

Severity LOW

Category Bug

Status Acknowledged
Description

(ool LW NIz =e A rcToken . sol: :distributeYieldWithLimit

The in the contract can send arbitrary yield to any specific holder by
using the gL AN\ iR IMT bk fuNction. This allows the distributor to allocate all yvield to a single
holder, rather than distributing it fairly among all holders.

For example, the distributor can call:

TypeScript

distributeYieldWithLimit(totalAmount, startIndex, maxHolders)

// where totalAmount = (x * effectiveTotalSupply) / holderBalance, startIndex = i, maxHolders
=1

and transfer | vield tokens to the contract beforehand. This results in only the selected holder receiving the
yield, while other holders may receive nothing.
This undermines the fairness and intended distribution of yield among all token holders.

Recommendation

Consider using checkpoint mechanisms to ensure fair distribution of yield.

56 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-03
Spin Does Not Auto-End After 12 Weeks #27

Id IMM-LOW-03

Severity LOW

Category Bug

Status Acknowledged
Description

Code Affected: - Spin duration and reward logic

The spin game does not automatically end after 12 weeks, allowing non-jackpot rewards to continue being
farmed indefinitely.

Recommendation

Implement logic to automatically end the spin game after the intended duration (e.g., 12 weeks).

57 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-01
Code Redundancy, Dead Code, and Code Duplication in Arc #44

Id IMM-INSIGHT-01

Severity

Category Informational

Status Fixed in 303694¢c82cad48cc5788d73b200159887a71318f
Description

Code Affected: Multiple locations (e.g., [XRII IR

There are various instances of code redundancy, dead code, and duplication throughout the project, which
can lead to maintenance challenges, increased risk of bugs, and unnecessary contract size.

Redundancy

previewYieldDistributionWithLimitfgEElamounts = new uint256[J(batchSize) ; RAVileE]

2. In INEALS UL I TN the X dgtaatelsFalollidly Storage variable is redundant, just use
M= d gt e sFalellialy and create a view function to return it.

Dead Code

N A g R e Tkl iS NOt used at all anywhere.

Duplication

1. The underlying login in all of (YgAKo N BRI g-\A RN SN Ee DAE o o f]V shiYe)y
ArcToken.sol::distributeYieldRelglel
ArcToken.sol::distributeYieldWithLimi tji SRR

PETRANSFER_RESTRICTION_TYPEEN[elYIELD_RESTRICTION_TYPEEIEKe[Zlilgl=TeNelejdaWIalA rcToken . solETg[el
ArcTokenFactory.soll

ArcToken.sol: :previewYieldDistributionWithLimit

Recommendation

Remove duplicated and redundant code to improve maintainability and reduce contract size.

58 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-02
Implementation Can Be Initialized by Anyone #43

Id IMM-INSIGHT-02

Severity

Category Informational

Status Acknowledged
Description

Ofele [SWANI=Ti=TeMIA rcTokenFactory . sol: :createTokenMArcToken. sol

In NI, the implementation contracts for are never initialized. This allows an
attacker to call initialize on the implementation contract directly. Thanks to the But, the modifier
from the [IVENVSAFELEEIIRE contract, implementations cannot be upgraded.

The JINIHgIY Modifier (IRl ey function:

TypeScript
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() '= __self // Must be called through an active
proxy

) A
revert UUPSUnauthorizedCallContext();

Since the implementations are not used as proxies, the Kol ddgerd) function will revert due to the

address(this) == __selffols1o:@

This check prevents unauthorized upgrades or self-destruction on the implementation contract. Which
makes it safe to not initialize the implementation contract.

But, it is best practice to prevent any initialization of the implementation contract for safety.

59 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Recommendation

o Either [GINRIEHOII IS CIRPIIST®) in the constructor of the implementation (and in

general for all upgradeable contracts) - This is the best practice.
e Orcall on the implementation contract after deployment.

60 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-03

Use of Instead of in Upgradeable Contract #42

Id IMM-INSIGHT-03

Severity

Category Informational

Status Acknowledged
Description

Code Affected: Upgradeable contract initialization logic

All of the upgradeable contracts use the modifier to protect its initialization function. While this
prevents re-initialization, it does not support future upgrades that may require additional initialization steps

Since the contract is upgradeable, using is recommended to allow safe, versioned
initialization for future upgrades.

Recommendation

Replace the modifier with [ES IR EIEPT SRt in upgradeable contracts to support safe,
versioned initialization during upgrades.

61 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-04
Preview Functions Are Not Marked as #41

Id IMM-INSIGHT-04

Severity

Category Informational

Status Fixed in 2360d5e6d0124e1b806b7cerb77f0790ef924d47
Description

(Ofele [SWANI-Ti=TeMA rcToken . sol : :previewYieldDistributionfpreviewYieldDistributionWithLimit

[glArcToken . solgERiVgleiulelgf o reviewYieldDistributionglglellpreviewYieldDistributionWithLimi tElgE

intended to provide a read-only preview of vield distribution outcomes. However, these functions are not
marked as views.

Recommendation

(VN previewYieldDistributionflglellpreviewYieldDistributionWithLimi tEERIENYALsledle] st R (e Nei (CE-14WY]
indicate that they do not modify contract state.

62 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-05
Deployer Cannot Manage Roles After Token Creation #40

Id IMM-INSIGHT-05

Severity

Category Informational

Status Fixed in 0dd791f5a8b37¢ce85f7bb8d8f0e09c05¢c8d5aci5
Description

Code Affected: [YgdI L Clililadda, role assighment logic

When creating a new token, the [YRaI R SI98] orants all major roles to the deployer [T TRTEE)):

TypeScript

token.grantRole(token.ADMIN_ROLE(), msg.sender);
token.grantRole(token.MANAGER_ROLE(), msg.sender);
token.grantRole(token.YIELD_MANAGER_ROLE(), msg.sender);
token.grantRole(token.YIELD_DISTRIBUTOR_ROLE(), msg.sender);
token.grantRole(token.MINTER_ROLE(), msg.sender);
token.grantRole(token.BURNER_ROLE(), msg.sender);
token.grantRole(token.UPGRADER_ROLE(), msg.sender);

However, the deployer is not granted the DEZXP-BILMONE, which is required to grant or revoke roles. As
a result, the deployer cannot delegate or renounce these roles, leading to a risk of centralization and lack of
flexibility in role management.

Recommendation

e Grant the DEFAULT_ADMIN_ROLE to the deployer so they can manage other roles.
e Alternatively, set the ADMIN_ROLE as the admin of the other roles to allow for proper delegation and
management.

63 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-06
Code Redundancy, Dead Code, and Code Duplication #30

Id IMM-INSIGHT-06

Severity

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Code Affected: Multiple locations (e.g., @I SIEIERST RS E=I8F4=, reward logic functions, staking

functions)

There are various instances of code redundancy, dead code, and duplication throughout the project, which
can lead to maintenance challenges, increased risk of bugs, and unnecessary contract size.

Redundancy

1. In @RISR IRER T IR IsP4s, the following snippet is duplicated within the same function:

TypeScript

S.minStakeAmount = minStake;
S.cooldownInterval = cooldown;
$.initialized = true;

2. Inreward rate updates, JlJeERENEIL XA M RI UIRIQFIRNEYd)g iS Called before

E-EICRE IR e M g i ks, but the latter already calls the former internally, making the first call
redundant:

TypeScript
PlumeRewardLogic.updateRewardPerTokenForValidator($, token, validatorId);
PlumeRewardLogic.createRewardRateCheckpoint($, token, validatorId, rate); // Use library

Dead Code

IR LRIV pledlelalc reateRewardRateCheckpointioJeEYERYS . validatorRewardRateCheckpoint sHe il

variable is never used elsewhere, making the update redundant and the function practically dead

64 Immunefi Audits Immunefi / Plume Network

@ Immunefi

o ok~ w

8.
0.

code.
In FEIRRERIN the SR luly, and NN modifiers are not used. The NI modifier is used
instead.

The in is not used.
In the function is not used.
i) PluneRewardLogic.sol Rl function is not used.
In the function is used to create a
commission rate checkpoint. But the checkpoint is not used anywhere else.
In the function is used to create a
checkpoint. But:
a. The is used to set and in 2 view

functions.

b. The [N d Y lesigiaNglel} iS used in [V RER e IYel Sele gk MMgle[4 Which is a get function

not used anywhere else.

So to summarize, the [EEIREIge LEYRN X {elellgld iS NOt really affecting any logic.

C.
[a¥PlumeValidatorLogic. soljualsYeetValidatorInfofiiigleiifelaWi-HalelMIlI-Te R

IpfPlumeValidatorLogic.soljugls}isValidatorActiveliVigleiulelaRi:Nplel AV -Te R

j[OMIBP1umeValidatorLogic. soljiplsYgetValidatorTotalStakedgiVigleilelaRiRalOIMI[I=1o R

The following storage variables are not used:

rewardPerTokenCumulative]

totalCooling]
totalWithdrawable)
d

validatorTotalCooling

currentEpochNumber

userValidatorStakeStartTime
asRole

slashVoteCounts

> 3 3 [)) [< [
Q [N ge] wn Q (%]
x x (@] —- = D
<Bi<Bo > R S5
O [N =) o o)
<< m o D
= =) N = =
ol Foul ol el [e])
Q V] Ll 0 S5 S
sl Kl EoB > - o
O §O v »n §O o
S 3 + + 0]
'l Il K= Q S
) o S = —
=N ER b= = o
2B EN E = x
D - B0 + D
=N 7N I= > >
+Qfn IS o el
Q < s = QO
0Q o (%) Q -

[0l =] =

Q

o

[-]

(D

The following storage variables are "used" but not actually affecting any logic:

(o))

5 Immunefi Audits Immunefi / Plume Network

@ Immunefi

Q1 o5 tUpdateTimes
Jll cvardsAvailablel
gl otalClaimableByToken
Jlcvards

Qi aLidatorTotalStaked
Q. serLastCheckpointIndex

Duplication

1. The is being declared in multiple facets. This is an unnecessary risk and
all facets should use the same centralized source of truth.

2. and addresses are being declared in multiple facets.

is being declared in multiple facets.

4. The modifier is being used in multiple facets, instead declaring it one in a common library
or a contract that is inherited by all facets.

B. is being used in multiple facets, instead using the function from the

PlumeStakingStoragejUe]elgY

w

Recommendation

e Remove duplicated and redundant code to improve maintainability and reduce contract size.

e Eliminate dead code and unused variables, such as YEIREIt g NI RETXIN It Aoled ks, tO prevent
confusion and potential errors.
e Any common logic should be extracted to a helper function.

66 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-07
No way to deactivate a whitelisted account #29

Id IMM-INSIGHT-07

Severity

Category Informational

Status Fixed in 8c295373bfd6c57602539f7add856af1280cf576
Description

Code Affected:

After a user is whitelisted, there is no way to remove them from the whitelist.
This can be problematic if a user's private key is compromised or if they want to leave the whitelist or any
other reason.

Recommendation

Add a function to remove a user from the whitelist.

67 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-08
Deactivated Prizes via Remain in Prize List #28

Id IMM-INSIGHT-08

Severity

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(Ol SWNICI o MR af fle. sol: : setPrizeActive
When a prize is deactivated using [IR ePAINSaRE it is not removed from the array or list. This can
result in deactivated prizes still appearing in prize selection logic or user interfaces, potentially causing

confusion or unintended behavior.

Recommendation

e When deactivating a prize via B IgrIINGaE, also remove its ID from the array or list.
e Remove the function entirely.

68 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-09
No Retry Mechanism for Failed Prize Transfers #26

Id IMM-INSIGHT-09

Severity

Category Informational

Status Acknowledged
Description

Code Affected: NI R RN =T K=Y g ANV

If BEQERER@E reverts, there is no retry mechanism in place.
It can lead to lost rewards if a transfer fails due to temporary issues.

Recommendation

Consider implementing a retry mechanism or a way for users to manually claim failed transfers.

69

Immunefi Audits

Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-10
Multiple Randomness Requests Possible in Raffle #25

Id IMM-INSIGHT-10

Severity

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

Ol Lo [WAI-TH e MR af f1e . sol: : requestWinner§Raffle.sol: :handleWinnerSelection

The function in the Raffle contract can be called multiple and only stops being callable after

a ENIERV ISR # ey Callback is processed.

This allows the creation of multiple randomness requests and can potentially overwrite the winner.

Since the owner is the only one who can call requestWinner, this is not a huge problem in the current
implementation.

But it could be a problem if the owner is not careful.

Recommendation

Add a flag that indicates that was called for a specific and prevent calling it again if
that is the case.

70 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-11
Unrestricted Initialization of #22

Id IMM-INSIGHT-11

Severity

Category Informational

Status Fixed in 297b5a76dd31c1d97¢c625bdb89e83560595cebf7
Description

Ofele[WANI{=Ti=TeMlP 1 umeStaking . sol: :initializePlume

The function currently allows the parameter to be set to zero during
contract initialization. This can lead to undesirable behavior, such as allowing users to register as stakers in

a validator context without being included in the array.
While the initialization is restricted to the contract owner, the absence of a minimum value check
introduces unnecessary risk and could result in subtle bugs or inconsistencies if is ever set

to zero, either accidentally or due to a misconfiguration.

Recommendation

Add a validation check in the function to ensure that is strictly greater
than zero.

71 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-12
Inconsistent Storage Access in AccessControlFacet #21

Id IMM-INSIGHT-12

Severity

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(OfeTo [SW N izl =ellAccessControlFacet. sol

The T Ia gl currently defines and uses its own storage variable [ETREEIEEERIC, Which is not
part of the shared @S0k storage layout located at slot Koo G AT IFI LY =T-{-P A LV NS =1 S NaI-4D).

This practice is unsafe in the context of diamond storage. Any future facet or modification that assumes a
consistent storage layout could unintentionally overwrite this slot or use it with a different meaning -

leading to hard-to-detect bugs and unexpected behavior.

Recommendation

Define I A#EIEPLN I8 inside the PlumeStaking storage struct and access it via the shared storage layout.
This ensures safe and consistent access across all facets in compliance with the diamond storage pattern.

72 Immunefi Audits Immunefi / Plume Network

@ Immunefi

AUDIT 2 - FINDINGS

IMM-CRIT-01

No Handling in Enables Theft #48

Id IMM-CRIT-01

Category Bug

Status Fixed in
3a745d505563afaf5093025165d1195d0955a772

Description

O L LWNICINelIStakingFacet . sol : : restakeRewards

No flow in allows theft of funds. A user can stake to a new validator via
but since there is no check, they skip updating their reward checkpoint update.
This can allow the user to steal rewards they don't deserve.

(Since during the reward calculation IEFASIgENEIge Ve EYIBIE falls back tojild Sasliy#=1y the flow to

exploit this issue is a bit more complicated, but it is still possible so this is very important to fix)

Recommendation

Add handling in the function

73 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-02
Slashing Can Be Prevented via Gas Exhaustion #47

Id IMM-CRIT-02

Severity

Category Bug

Status Fixed in
3a745d505563afaf5093025165d1195d0955a772

Description
(0T [SWNICII Il alidatorFacet. sol: : slashValidator

The SERNWEIRE]; function loops over all of JEIREEIRIgELCEIgS and then internally every reward token. A
malicious validator can use a large number of stakers to exploit this to consume all gas for slashing
attempts. Consider enforcing a max number of JEIEEIt g I8

Recommendation

Implement a maximum limit on the number of stakers per validator

74 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-03
Duplicate timestamp Commission Checkpoints Can Lead to Theft #46

Id IMM-CRIT-03

Severity

Category Bug

Status Fixed in 9f1€5483e289¢9d45d3ebedd3b62c4e88ea3417¢c
Description

(Ofele[WANI{=Tit=Tel P1lumeRewardlLogic.sol: :getEffectiveCommissionRateAt]

PlumeRewardLogic.sol: :findCommissionCheckpointIndexAtOrBefore

When creating a new checkpoint of any kind, there is no check to see if the timestamp already exists. This
means that a validator can create multiple checkpoints with the same timestamp, which will cause the
binary search to return a different checkpoint for the same timestamp for different users.

Qlgle)cetEffectiveCommissionRateAtRiVpla o NG gl i ndCommissionCheckpointIndexAtOrBeforeRWiallds]

uses binary search under the assumption that JEISTsEde] @l FEFHRe MYl Selellgkd~ contains distinct
timestamps. However, a validator can insert multiple commission changes within the same block, all

sharing the same timestamp. This causes inconsistent search results, potentially returning a 0%
commission for users and the maximum for the validator—allowing them to claim an unfair share of
rewards.

Side Note: YEIR s EY I EEIR RERIM I olel gk #s Can also contain entries with the same timestamp, but this is
controlled by you guys so it's less of an issue, but should be fixed as well.

Recommendation

If creating a new checkpoint in the same block, overwrite the last checkpoint instead of creating a new one.

75 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-04
Excessive Commission Changes Can Lock Funds #45

Id IMM-CRIT-04

Severity

Category Bug

Status Fixed in 9d49b09f7a6591bbfO0aabbf9e2131869e2186f81
Description

Ofele WAV {=Tit=TeMlP 1 umeRewardlLogic. sol: : calculateRewardsWithCheckpoints

M¥calculateRewardsWithCheckpoint SRt array is built from all commission checkpoints

and reward checkpoints and later iterated over.

A malicious validator can create many commission checkpoints to bloat this array and effectively block
users from claiming rewards. This can also happen by accident with time.

Recommendation

e Implement a maximum limit on the number of commission checkpoints a validator can create
e Consider implementing a cleanup mechanism for old checkpoints

76 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-05
Users Can Bypass Slashing Penalties #69

Id IMM-CRIT-05

Severity

Category Bug

Status Fixed in b1f7364252f28d7eb342a26b846fedf34c8cOace
Description

Ofele [SWANI-T eI S tak ingFacet . sol: : restake

The function allows users to move funds that are in the cooling or parked state to a different
validator. This opens up a loophole where users can effectively avoid slashing.

Example Scenario
Suppose Validator A is about to be slashed in the next block. A user with staked funds on Validator A can:

1. Initiate an from Validator A.
2. Immediately call to move the funds to Validator B.

Even though the request hasn't completed the cooldown period and is not yet withdrawable, the
funds can still be restaked elsewhere. This allows users to move their funds away from slashing risk and

effectively shield them, rendering the slashing mechanism ineffective.

Recommendation

Addressing this issue likely requires a redesign of the logic to ensure that slashing applies
consistently, even during cooldown periods.

7 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-CRIT-06
Validator Can Bypass Slashing Penalties #70

Id IMM-CRIT-06

Severity

Category Bug

Status Fixed in 747f7156836522d908efa25feb532565c7df58b7
Description

(ool LW N izl =ellValidatorFacet . sol: : finalizeCommissionClaim

The [REIRPA e IEIIR MM function is intended to prevent slashed validators from withdrawing
commission rewards that were initiated after the voting against them started. However, it reverts under the
following condition:

TypeScript
if (validator.slashed && claim.requestTimestamp >= validator.slashedAtTimestamp) {
revert ValidatorInactive(validatorId);

refers to when the claim was initiated-not when the funds become withdrawable.
As aresult, a validator can initiate a commission claim at any point before being slashed (even during the
voting period), and then simply wait for the cooldown to pass before finalizing the claim and withdrawing

funds. This effectively allows them to escape the consequences of slashing.

Recommendation

Update the condition to ensure that slashing applies retroactively to any pending commission claims.
Specifically, check that:

78 Immunefi Audits Immunefi / Plume Network

@ Immunefi

TypeScript
claim.requestTimestamp + PlumeStakingStorage.COMMISSION_CLAIM_TIMELOCK <
validator.slashedAtTimestamp

This ensures that only claims that completed their timelock before the validator was slashed can be
finalized.

79 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-01
No New Reward Checkpoint on Token Remove #50

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in 69b384873c6c9aeabf27c064248699f271eb248e
Description

(ool Wizl seMRewardsFacet . sol: : removeRewardToken

When a reward token is removed, no new [RSEIRLREIIMII Soledals iS created. This allows users to continue
accumulating rewards for the removed token, which should not be possible.

Recommendation

Create a final checkpoint when removing a reward token

80 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-HIGH-02
Staker Not Removed After Claim #49

Id IMM-HIGH-02

Severity High

Category Bug

Status Fixed in
3a745d505563afaf5093025165d1195d0955a772

Description

Code Affected:
N [SEMET T IR R A A IR Eido e D], the staker is not removed from the validator. This can lead

to stale data in the validator's staker list and potential issues with future operations.

Recommendation

Implement proper staker removal after successful claim

81 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-01
Winner Selection State Not Reset on Handler Failure #66

Id IMM-MED-01

Severity Medium

Category Bug

Status Fixed in 64be0ale4876c0e9bd56cecd0584b119f45e4f31
Description

(Ol [SWNI{CIIoMRaf fle. sol: :handleWinnerSelection
If QENIR NI EIRII®Eely| fails, there can never be a winner for that prizeld since B IETIIaE e[S d adYalobgte

will remain true and prevent calls to [N o

Recommendation

Consider implementing a timeout mechanism for pending winner selections

82 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-02
Spin State Not Reset on Randomness Handler Failure #65

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 08fa565d261fbe2874a8bf2aac7070f77fee6773
Description

(Ofele WAV {=Toit=TeMSpin . sol : : handleRandomness
If QENCIRVERIINERN fails (for example the plume transfer reverts) B3Rl bARIS-gTle 1 Will remain

true forever and the user will never be able to spin again.

Recommendation

Consider implementing a timeout mechanism for pending spins

83 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-MED-03
Commission Might Be Able to Claim Before Slashing Period Ends #51

Id IMM-MED-03

Severity Medium

Category Bug

Status Fixed in
f9c053b2b1683691ce35c36ba7e138e7a2807369

Description

(O%ele [SWAV I {Teit=TeMIRcwardsFacet . sol: : requestCommissionClaimiglglel
RewardsFacet.sol::finalizeCommissionClaim

HENYNER NI LD EY SR INNEI I K can exceed WoITSIo eI mpl/aRele, letting validators claim

commission even when under active slashing vote. This could allow them to escape slashing
consequences.

Recommendation

SIS0 EYImaxSlashVoteDurationInSecondsEEWYEVSR R ERNCOMMI SSION_CLAIM_TIMELOCK

84 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-01

Validator Commission Checks Not Enforced on (EN¢NEETEe 21 Bke -y de) a 6ol /1 FRF I Xel0

Update #61

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in 0523300203430aa7b7610102d9afe13b20307ef7
Description

(Olo [WA\ {loi=lelIManagement Facet . sol : : setMaxAllowedValidatorCommission

When EXEIRETL\EART EYdeIg®eliiF o]y is changed, there is no check that all validator commissions are less
than the newly set (ENNIRENTEINEIRT Eite g ®eli FEFFeYy, allowing the existence of validators with a commission

plls] TRt EEIgImaxAllowedValidatorCommission}

Recommendation

During HAiENYIRTI\EYRTe EYde g®elin b8 Iy, Update all violating validators to the new maximum

85 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-02
Incorrect Decrease on Slashing #57

Id IMM-LOW-02

Severity LOW

Category Bug

Status Fixed in 86af6d4c51b426f0adf621244f117bbe8d1d4d0d
Description

Ofele WAV {=TiTeMlP 1 umeStaking . sol: : slashValidator

When slashing a validator, [d £ l&aEN} iS being decreased by the entire amount of YEIEKeE Xl gife) =N ¢leTe) k¥ Y=

for the malicious validator. But, if a user unstaked before the slashing vote period even started (in other
words - unstaked in time) their unstake is valid and once they withdraw their funds, [Hesal&«aA¥ Will
decrease again, effectively decreasing twice for the same amount.

This also has the side effect of making YEIRGEIIgE LR Y inaccurate for the same reason.

Recommendation

Implement proper tracking of cooling amounts for slashed validators

86 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-03
Expired Votes Not Properly Filtered #55

Id IMM-LOW-03

Severity LOW

Category Bug

Status Fixed in aebcbd127a932bed3bb6c3eb6dfc4cdOdf7de5902
Description

Ofele WAV =Tl Tl alidatorFacet. sol: : _cleanupExpiredVotes

RAERS SN doesn't validate that the RRIQEIBEIRIgNe| iS active and not slashed, allowing stale or

invalid votes to linger.

Recommendation

Add validation to check validator status before processing votes

87 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-04
Votes Can Be Cleaned Up to Avoid Slashing #54

Id IMM-LOW-04

Severity LOW

Category Bug

Status Fixed in 93dd3e5bdbff73b5245ce8f3adbf4511708feaae
Description

Ofelo[SWANI=TitcIel ValidatorFacet.sol: :cleanupExpiredVotesvalidatorFacet.sol::voteToSlashValidator

If slashing isn't triggered before the voting window expires, a malicious validator can call
AERI ST IRt L= t0 remove stale votes and evade punishment. Consider auto-triggering slashing

during ZIeIEEFNEIREEYe]g if the vote count is sufficient.

Recommendation

Implement auto-triggering of slashing when vote threshold is reached

88 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-05
Validator Creation Can Be Blocked From Being Created #53

Id IMM-LOW-05

Severity LOW

Category Bug

Status Fixed in 38292d32a941d786a45eef8aebcab7bdc4f7ebbc
Description

(Ofele WA {Tei=TeMlV a1 idatorFacet . sol: :addValidatorfValidatorFacet.sol: :setValidatorAddresses

A malicious validator can frontrun an ElINEIRKEIRels transaction by calling HIAEIREII Xl IR, setting
the new validator's admin to their own. This causes the ELLVEIREIHg call to revert due to YN IMTNFFR{gT=Ne .

Recommendation

Implement a "acceptAdmin" function that allows the new admin to accept the admin role before switching
it to the new admin.

89 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-06
Claim Reverts on Slashed Validator #52

Id IMM-LOW-06

Severity LOW

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772
Description

(Ofele WA {Tei=TeMIRcwardsFacet. sol: :claimfRewardsFacet.sol: :_validateValidatorForClaim

W ReEMglelc1aim(address token, uint16 validatorId)M_validateValidatorForClaim revertsjiiiE

validator is slashed, even though rewards may still be claimable. (the other claim function makes this less
of an issue, but still)

Recommendation

Modify INEIREIXVEIR N Ei eI X IgMEM) tOo allow claims for slashed validators

90 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-07

Incorrect Handling of Slashed Validators in J[es EltaRE IR IR G IR A SR Fidely # /1

Id IMM-LOW-07

Severity LOW

Category Bug

Status Fixed in 7edae49alafdb948b227f3d80ab592b7b7d4f761
Description

(Ofele [WAV {=TitTeMlP 1 umeRewardlLogic. sol: :updateRewardPerTokenForValidator

The function currently checks for inactive validators before checking for slashed ones:

TypeScript
if (!validator.active) {

return;
}
// --- END INACTIVE CHECK ---
// --- BEGIN SLASH CHECK ---

if (validator.slashed) {

}

However, since slashed validators are also marked as inactive, the slashed check is never reached. This
results in slashed validators being treated as merely inactive.

Recommendation

Reorder the conditional checks so that slashing is handled before inactivity.

91 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-08

ALY NI ARG ENEI N ET-aRi =T Only Checks for RV RRYS #72

Id IMM-LOW-08

Severity LOW

Category Bug

Status Fixed in a17465bec3c22d915556ff44ecde6¢c882213bbad
Description

(Ofele[WAVI =T =IeMlP 1 umeRewardlLogic. sol: : clearPendingRewardsFlagIfEmpty

The EEI N IGENEIG AT aRiaulaY function currently checks only for removed pending rewards in
RIS\ ERYS. If a user has pending rewards in other tokens and those are removed, the function fails to

account for them. As a result, it may incorrectly clear the user’'s [ENHMIGENEIReR flag, even though
rewards from other tokens may still be pending.

Recommendation

Create a historical array of all reward tokens that ever existed in the protocol. Use this list within

AREIg IV b -G ENETR T AR i TefdY tO ensure that the function accurately checks all potential reward tokens,
even removed ones, before clearing the pending flag.

92 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-LOW-09

Admin May Improperly Clear Valid SHIaZEIEREXdeIg®eledNe [T} # 7 3

Id IMM-LOW-09

Severity LOW

Category Bug

Status Fixed in 7a2fde4ace99430bb2bcb9939218ec415f0e55d2
Description
Code Affected:

{ IManagementFacet.sol: :adminClearValidatorRecord

(IManagementFacet.sol: :adminBatchClearValidatorRecords

Both admin functions clear entries in JHIaEIRElte gl IR leIMil Without verifying their validity. This can lead
to the removal of legitimate cooldown requests that users are still entitled to withdraw after the cooldown

period.

Recommendation

Only remove cooldown entries if they are invalid (if they were created during the voting period for a slashing
event). This ensures legitimate user cooldowns remain intact and prevents unintended loss of withdrawal
rights.

93 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-01
Redundant Winner Request State Management #68

Id IMM-INSIGHT-01

Severity

Category Informational

Status Fixed in 10d3f3888735bde0f913ab8eaafle02bbal925ae
Description

Ol Lo [WAI-TH e MR af f1e . sol: : requestWinner§Raffle.sol: :handleWinnerSelection

can be called again after I eI S gty has been called because
NI N dat=laleblglsy Was set to false during [(EI ISRt #Rely. It has no actual effect because
SENT RIS INTd# el Will revert due to the prize being inactive.

Recommendation

Prevent calling if a winner has already been selected

94 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-02
Unused Code in Spin Contract #67

Id IMM-INSIGHT-02

Severity

Category Informational

Status Fixed in 6b203943f77d1f7fb43da2bf5008daf7f65106df
Description

Ofele [SWAI=TiTeMSpin . sol: : _getWeeklyJackpotDetails

The BEAEINAEdSJIDEEIE function is defined but never used in the contract.

Recommendation

Remove the unused EHEEINAEESIABIREE] function and any other unused code

95 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-03
Unnecessary Storage Reads #64

Id IMM-INSIGHT-03

Severity

Category Gas Optimization

Status Fixed in
1565942¢c25f9de53b2d34b64ab515afd055b4dbe3

Description

Code Affected: Multiple functions including g« E At a=te (el ReleIMgFS
In functions like IJgJEERLEINIge ®IIINE, storage variables are copied into storage references (e.g.,
TR I=RARY storage i h=da A=) cven when only reading. Use memory variables instead where

writes aren't needed to save gas.

Recommendation

Replace storage references with memory variables when only reading

96 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-04
Duplicate Storage Variables #63

Id IMM-INSIGHT-04

Severity

Category Gas Optimization

Status Fixed in 12fb6349e9966cf1dd3ac678945a054bba458577
Description

Code Affected: Multiple storage variables across facets

Variables like YEIR s EYXI ARSI EIE and YEIRY EYRI IR ERe E o) e NI [ANT-LRAte I elg}d Store the same value

and are used the same redundancy can improve gas efficiency.

Recommendation

Remove redundant storage variables and use a single source of truth.

97 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-05
Different Reward Rates Used for The Same Segment #62

Id IMM-INSIGHT-05

Severity

Category Informational

Status Acknowledged
Description

(Ofele [WAV =TT MlP 1 umeRewardlLogic. sol: : updateRewardPerTokenForValidator

During (e EYHLENEIRe XY AR CHITIAEIRT EYRelg the timestamp used for AR ISR ENEIR rEYRY Y iS the end of

the time segment, while IS RIS SR IFEFFREIRYNY Lises the start of the time segment. Theoretically,
this can lead to different reward rates for the same time segment, leading to inconsistent reward
distributions.

But, since [Eit= = EIne I CUIRIR 18N EYRely iS called before every reward checkpoint, this is not a real
issue.

Recommendation

Make sure to keep this fact in mind in the future. Currently, this is not a real issue.

98 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-06
High Validator Count May Be Costly #60

Id IMM-INSIGHT-06

Severity

Category Gas Optimization

Status Acknowledged
Description

Code Affected: Multiple functions that iterate over validators

Since the system is expected to have only 10-20 validators it is not a real problem, but several functions iterate over
all validators, increasing gas costs. Consider limiting how many validators a single user can stake with (e.g., max
10) and management functions that iterate over all validators can iterate in batches.

Recommendation

e Implement a maximum limit on the number of validators a user can stake with
e Add batch processing for functions that iterate over all validators

99 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-07

maxValidatorPercentagelERIEIEGNEE 58

Id IMM-INSIGHT-07

Severity

Category Informational

Status Acknowledged
Description

Code Affected: NELSIEEEISIMIN ValidatorPercentage checks
Currently always set to zero and immutable, making JEIRElt g lge=i#=1:1s checks non-functional.

Note: If this value is set to anything other than O and no one has staked yet, no one will be able to stake,

since for the first staker, [y NN e Y eV TR Wo =0 B #=1 cTe |

Recommendation

e Implement proper initialization of JENCEIEs it g Vgl s #=1o{

e Add special handling for the first staker case
e Consider making configurable rather than immutable

100 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-08
Missing Constant Initialization #58

Id IMM-INSIGHT-08

Severity

Category Informational

Status Fixed in 27b9cd45a1e25¢813bb3f444cb658021fcab62124
Description

Ofele[WANI{=Ti=TeMlP 1 umeStaking . sol: :initializePlume

o] g1d[er-1We] o) (elele] Nele IS = R s =t Mo x S1 ashVoteDurationInSecondsglglelmaxAl lowedVal idatorCommissionfel(s
not initialized in MRS EIRPASRRNE. | (ENCYRSEINEIRT EYde g Ml bR o)) remains zero, validators cannot earn

commission.

Recommendation

Initialize all critical protocol constants in

101 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-09
Single Validator Can Be Slashed Without Any Votes #56

Id IMM-INSIGHT-09

Severity

Category Informational

Status Acknowledged
Description

(ool W Ni=l3=ellVal idatorFacet . sol: :slashValidator

If only one validator is active, it can be slashed without any voting. There shouldn't be a single validator so
it's not a huge problem.

Recommendation

N/A

102 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-10
Becomes Inaccurate After Checkpoint Pruning #74

Id IMM-INSIGHT-10

Severity

Category Informational

Status Fixed in
152e497926bba305662c0128a9ad44002ecf8593

Description

(0%ele [SWAV {Teje=TeMIManagementFacet . sol : :pruneRewardRateCheckpoints

The [JEIEEIg TEIRIM Yl Selel gk function removes validator reward checkpoints by shifting the checkpoint
array and popping elements. However, if a user’s (R a2 Was pointing to one of the
pruned entries (for example the latest checkpoint), it will become invalid and refer to a non-existent index.

Since [HIgER oI Sl iigaMglels iS only used in view contexts and doesn’t affect state changes or protocol
logic, this issue poses no security risk.

Recommendation

Consider whether this variable is still necessary. If it's not providing meaningful utility, it might be worth
removing.

103 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-11
The view function May Count Votes from Ineligible Validators #75

Id IMM-INSIGHT-11

Severity

Category Informational

Status Fixed in aebcbd127a932bed3bb6c3eb6dfc4cdOdf7de5902
Description

Ofele[WAVI{=ToilTeMlValidatorFacet. sol: : getSlashVoteCount
The HIENNSLE®I function does not verify whether the vote was cast by an eligible validator (i.e.,

active and not slashed). As a result, votes from inactive or already-slashed validators may be incorrectly
counted. Additionally, there is inconsistency in how vote expiration is handled:

o HMAERNISTMELLNILN treats votes expiring at the current block as expired:

TypeScript
bool voteHasExpired = block.timestamp >= voteExpiration;

o [EAMNIENNTIHINN on the other hand, treats them as still valid:

TypeScript
if (voteExpiration > © && voteExpiration >= currentTime) {
validVoteCount++;

Recommendation

Ensure JEIRE\H®GYd is incremented only when:

1. The voting validator is active and not slashed.

104 Immunefi Audits Immunefi / Plume Network

@ Immunefi
2. The vote has not expired (o=l A= 1ol i NPl) KoTe (PR B | [SAR= 11118

Align the expiration logic with IRERIJSI Mg Jd= t0 maintain consistency across the codebase.

105 Immunefi Audits Immunefi / Plume Network

@ Immunefi

IMM-INSIGHT-12
Off-by-One Error Prevents Re-Voting for a Single Block #76

Id IMM-INSIGHT-12

Severity

Category Informational

Status Fixed in
0804ea4ba73a22c608d00d638369392578c6eeb3

Description
(Ol [SWNICI IV al idatorFacet . sol: :voteToSlashValidator

INn RIILNIERNEIREEMe]s. a validator is prevented from voting again if their previous vote has not yet
expired:

TypeScript
uint256 currentVoteExpiration =
$.slashingVotes[maliciousValidatorId][voterValidatorId];
if (currentVoteExpiration >= block.timestamp) {
revert AlreadyVotedToSlash(maliciousValidatorId, voterValidatorId);

This logic treats a vote as valid if its expiration is greater than or equal to the current block timestamp.
However, RIAEER ST\ uses the following logic to determine vote validity:

TypeScript
bool voteHasExpired = block.timestamp >= voteExpiration;

This means votes that expire in the current block (d==qIAs= st M=) Xele| SRB | Y #=1s) are treated as
expired in MAEERIJPY SN, but still prevent re-voting in SIS EN 1§ e EYdely.

Impact

106 Immunefi Audits Immunefi / Plume Network

@ Immunefi

This creates a one-block window where a validator cannot re-vote even though their vote is considered
expired for cleanup and counting purposes. It's a minor logic inconsistency that might lead to confusion or

temporary vote blocking.

Recommendation

Update the voting logic in Y3 EMNEIREIHs to match the expiration logic used in

HAERNS YL R. Specifically, change the condition to:

TypeScript
if (currentVoteExpiration > block.timestamp) {
revert AlreadyVotedToSlash(maliciousValidatorId, voterValidatorId);

This ensures that votes expiring in the current block are consistently treated as expired across all code

paths.

107 Immunefi Audits Immunefi / Plume Network

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	AUDIT 1
	AUDIT 2
	

	
	AUDIT 1 - FINDINGS
	IMM-CRIT-01
	IMM-CRIT-02
	IMM-CRIT-03
	IMM-CRIT-04
	IMM-CRIT-05
	IMM-CRIT-06
	IMM-CRIT-07
	IMM-CRIT-08
	IMM-CRIT-09
	IMM-CRIT-10
	IMM-CRIT-11
	IMM-CRIT-12
	IMM-CRIT-13
	IMM-CRIT-14
	IMM-HIGH-01
	IMM-HIGH-02
	IMM-HIGH-03
	IMM-HIGH-04
	IMM-HIGH-05
	IMM-HIGH-06
	IMM-MED-01
	IMM-MED-02
	IMM-MED-03
	IMM-MED-04
	IMM-MED-05
	IMM-MED-06
	IMM-MED-07
	IMM-MED-08
	IMM-MED-09
	IMM-LOW-01
	IMM-LOW-02
	IMM-LOW-03
	IMM-INSIGHT-01
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06
	IMM-INSIGHT-07
	IMM-INSIGHT-08
	IMM-INSIGHT-09
	IMM-INSIGHT-10
	IMM-INSIGHT-11
	IMM-INSIGHT-12

	AUDIT 2 - FINDINGS
	IMM-CRIT-01
	IMM-CRIT-02
	
	IMM-CRIT-03
	
	IMM-CRIT-04
	
	IMM-CRIT-05
	
	IMM-CRIT-06
	
	IMM-HIGH-01
	IMM-HIGH-02
	
	IMM-MED-01
	IMM-MED-02
	
	IMM-MED-03
	
	IMM-LOW-01
	IMM-LOW-02
	
	IMM-LOW-03
	IMM-LOW-04
	IMM-LOW-05
	IMM-LOW-06
	IMM-LOW-07
	IMM-LOW-08
	IMM-LOW-09
	IMM-INSIGHT-01
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06
	IMM-INSIGHT-07
	IMM-INSIGHT-08
	IMM-INSIGHT-09
	IMM-INSIGHT-10
	IMM-INSIGHT-11
	IMM-INSIGHT-12

