

DATE​ July 14, 2025

AUDITOR​ Blockian, Security Researchers

REPORT BY​ Immunefi

01​ About Immunefi
02​ Terminology
03​ Executive Summary
04​ Audit 1 - Findings
05​ Audit 2 - Findings

​

ABOUT IMMUNEFI​ 4
TERMINOLOGY​ 5
EXECUTIVE SUMMARY​ 6

AUDIT 1​ 6

AUDIT 2​ 7

AUDIT 1 - FINDINGS​ 8
IMM-CRIT-01​ 8

IMM-CRIT-02​ 9

IMM-CRIT-03​ 10

IMM-CRIT-04​ 12

IMM-CRIT-05​ 14

IMM-CRIT-06​ 16

IMM-CRIT-07​ 19

IMM-CRIT-08​ 21

IMM-CRIT-09​ 23

IMM-CRIT-10​ 24

IMM-CRIT-11​ 26

IMM-CRIT-12​ 27

IMM-CRIT-13​ 29

IMM-CRIT-14​ 31

IMM-HIGH-01​ 33

IMM-HIGH-02​ 34

IMM-HIGH-03​ 35

IMM-HIGH-04​ 36

IMM-HIGH-05​ 38

IMM-HIGH-06​ 40

IMM-MED-01​ 41

IMM-MED-02​ 42

IMM-MED-03​ 43

IMM-MED-04​ 44

IMM-MED-05​ 46

IMM-MED-06​ 48

IMM-MED-07​ 49

IMM-MED-08​ 50

IMM-MED-09​ 52

IMM-LOW-01​ 53

IMM-LOW-02​ 55

2​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-03​ 56

IMM-INSIGHT-01​ 57

IMM-INSIGHT-02​ 58

IMM-INSIGHT-03​ 60

IMM-INSIGHT-04​ 61

IMM-INSIGHT-05​ 62

IMM-INSIGHT-06​ 63

IMM-INSIGHT-07​ 66

IMM-INSIGHT-08​ 67

IMM-INSIGHT-09​ 68

IMM-INSIGHT-10​ 69

IMM-INSIGHT-11​ 70

IMM-INSIGHT-12​ 71

AUDIT 2 - FINDINGS​ 72
IMM-CRIT-01​ 72

IMM-CRIT-02​ 73

IMM-CRIT-03​ 74

IMM-CRIT-04​ 75

IMM-CRIT-05​ 76

IMM-CRIT-06​ 77

IMM-HIGH-01​ 79

IMM-HIGH-02​ 80

IMM-MED-01​ 81

IMM-MED-02​ 82

IMM-MED-03​ 83

IMM-LOW-01​ 84

IMM-LOW-02​ 85

IMM-LOW-03​ 86

IMM-LOW-04​ 87

IMM-LOW-05​ 88

IMM-LOW-06​ 89

IMM-LOW-07​ 90

IMM-LOW-08​ 91

IMM-LOW-09​ 92

IMM-INSIGHT-01​ 93

IMM-INSIGHT-02​ 94

IMM-INSIGHT-03​ 95

IMM-INSIGHT-04​ 96

3​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-05​ 97

IMM-INSIGHT-06​ 98

IMM-INSIGHT-07​ 99

IMM-INSIGHT-08​ 100

IMM-INSIGHT-09​ 101

IMM-INSIGHT-10​ 102

IMM-INSIGHT-11​ 103

IMM-INSIGHT-12​ 105

4​ Immunefi Audits​ Immunefi / Plume Network

​

ABOUT IMMUNEFI

Immunefi is the leading onchain security platform, having directly prevented hacks worth more than
$25 billion USD. Immunefi security researchers have earned over $120M USD for responsibly disclosing
over 4,000 web2 and web3 vulnerabilities, more than the rest of the industry combined.

Through Magnus, Immunefi delivers a comprehensive suite of best-in-class security services through a
single command center to more than 300 projects — including Sky (formerly MakerDAO), Optimism,
Polygon, GMX, Reserve, Chainlink, TheGraph, Gnosis Chain, Lido, LayerZero, Arbitrum, StarkNet, EigenLayer,
AAVE, ZKsync, Morpho, Ethena, USDT0, Stacks, Babylon, Fuel, Sei, Scroll, XION, Wormhole, Firedancer, Jito,
Pyth, Eclipse, PancakeSwap and many more.

Magnus unifies SecOps across the entire onchain lifecycle, combining Immunefi’s market leading products
and community of elite security researchers with a curated set of the very best security products and
technologies provided by top security firms — including Runtime Verification, Dedaub, Fuzzland, Nexus
Mutual, Failsafe, OtterSec and others.

Magnus is powered by Immunefi’s proprietary vulnerabilities dataset — the largest and most
comprehensive in web3, ensuring that security leaders and teams have the best possible tools for
identifying and mitigating life threats before they cause catastrophic harm, all while reducing operational
overhead and complexity.

Learn how you can benefit too at immunefi.com.

5​ Immunefi Audits​ Immunefi / Plume Network

​

TERMINOLOGY
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our

findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

-​ Likelihood represents the likelihood of a finding to be triggered or exploited in practice

-​ Impact specifies the technical and business-related consequences of a finding

-​ Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are

derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

LIKELIHOOD IMPACT

 HIGH MEDIUM LOW

CRITICAL Critical Critical High

HIGH High High Medium

MEDIUM Medium Medium Low

LOW Low

NONE None

As seen in the table above, findings that have both a high likelihood and a high impact are classified as

critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the

severity correlates with the associated risk. However, every finding's risk should always be closely checked,

regardless of severity.

6​ Immunefi Audits​ Immunefi / Plume Network

​

EXECUTIVE SUMMARY
​
Immunefi conducted two comprehensive audits of Plume Network’s contracts repository between April

24th and June 3rd. Across both audits, 76 issues were identified.

SUMMARY

Name Plume Network

Repository https://github.com/plumenetwork/contracts

Audit Commit f5332b2bbcc9f4a58ac818785ed11762968d5610

Type of Project Stablecoin, RWA, Blockchain

Audit Timeline
●​ Audit 1: April 24th - May 8th
●​ Audit 2: June 1st - June 3rd

Fix Period June 7th - July 9th

AUDIT 1
ISSUES FOUND

Severity Count Fixed Acknowledged

Critical 14 13 1

High 6 6 0

Medium 9 8 1

Low 3 1 2

Insights 12 9 3

CATEGORY BREAKDOWN

Bug 32

Gas Optimization 0

Informational 12

7​ Immunefi Audits​ Immunefi / Plume Network

https://github.com/plumenetwork/contracts

​

AUDIT 2
ISSUES FOUND

Severity Count Fixed Acknowledged

Critical 6 6 0

High 2 2 0

Medium 3 3 0

Low 9 6 0

Insights 12 8 4

CATEGORY BREAKDOWN

Bug 23

Gas Optimization 3

Informational 6

8​ Immunefi Audits​ Immunefi / Plume Network

None

​

AUDIT 1 - FINDINGS

IMM-CRIT-01
Token Creator Can Upgrade ArcToken Implementation #33

Id IMM-CRIT-01

Severity Critical

Category Bug

Status Fixed in 20814d1b32321e2d1d26ff2e20239a79712714a5

Description

Code Affected: ArcTokenFactory.sol::createToken

When a new ArcToken is created using the createToken function, the UPGRADER_ROLE is granted to the

msg.sender (the token creator):

token.grantRole(token.UPGRADER_ROLE(), msg.sender);

This allows the token creator to call upgradeToAndCall on the ArcToken contract, giving them full control

over the token's implementation. As a result, the creator can upgrade the ArcToken contract at any time,

bypassing the intended control of the ArcTokenFactory and potentially introducing malicious logic or

vulnerabilities.

This undermines the security and trust assumptions of the ArcTokenFactory, as upgrades can occur without

factory or governance oversight.

Recommendation

Grant the UPGRADER_ROLE to the ArcTokenFactory contract instead of the token creator.

9​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-02
Unbounded Array Iteration in Yield Distribution Can Lead to No Yield Distribution #32

Id IMM-CRIT-02

Severity Critical

Category Bug

Status Acknowledged

Description

Code Affected: ArcToken.sol::distributeYield, distributeYieldWithLimit, preview functions

Both distributeYield functions (distributeYield and distributeYieldWithLimit), as well as the preview

functions in ArcToken.sol, iterate over the entire $.holders array to determine effectiveTotalSupply.

Since the $.holders array is not bounded in size, if there are a large number of holders, these functions may

revert due to exceeding the block gas limit.

Recommendation

●​ Avoid iterating over unbounded arrays in public or external functions.

●​ Consider using a mapping or checkpointing mechanism to track supply and yield distribution

efficiently.

10​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-03
No minOutAmount Protection in Token Purchase Can Result in Theft of Funds from

Buyers #31

Id IMM-CRIT-03

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ArcTokenPurchase.sol::buy

The buy function in ArcTokenPurchase does not include a minOutAmount parameter. This omission allows the

seller to frontrun a buy transaction and manipulate the price, resulting in the buyer receiving fewer tokens

than expected.

There are two main ways the seller can manipulate the outcome:

1.​ The seller can frontrun a buy transaction with an enableToken transaction and set a new price,

causing the buyer to receive less than the expected amount.

2.​ The seller can frontrun a buy transaction with an upgradeToAndCall transaction on the ArcToken itself,

changing the decimals and thus altering the calculation of arcTokensBaseUnitsToBuy.

For example:

uint8 tokenDecimals = token.decimals(); // Get decimals dynamically
uint256 scalingFactor = 10 ** tokenDecimals;

// Calculate ArcToken base units to buy, assuming tokenPrice is for 1 full ArcToken (scaled
by its decimals)
uint256 arcTokensBaseUnitsToBuy = (_purchaseAmount * scalingFactor) / info.tokenPrice;

Both tokenDecimals and tokenPrice can be manipulated by the seller, impacting the buyer's received

amount.

11​ Immunefi Audits​ Immunefi / Plume Network

​

Recommendation

Add a minOutAmount parameter to the buy function to protect buyers from receiving fewer tokens than

expected due to price or decimal manipulation.

12​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-04
Users Can Spin Multiple Times Before Randomness Callback #23

Id IMM-CRIT-04

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: Spin.sol::startSpin

 modifier canSpin() {

 uint256 _lastSpinTimestamp = userDataStorage.lastSpinTimestamp;

 // Retrieve last spin date components
 (uint16 lastSpinYear, uint8 lastSpinMonth, uint8 lastSpinDay) = (
 dateTime.getYear(_lastSpinTimestamp),
 dateTime.getMonth(_lastSpinTimestamp),
 dateTime.getDay(_lastSpinTimestamp)
);

 // Retrieve current date components
 (uint16 currentYear, uint8 currentMonth, uint8 currentDay) =
 (dateTime.getYear(block.timestamp), dateTime.getMonth(block.timestamp),
dateTime.getDay(block.timestamp));

 // Ensure the user hasn't already spun today
 if (isSameDay(lastSpinYear, lastSpinMonth, lastSpinDay, currentYear, currentMonth,
currentDay)) {
 revert AlreadySpunToday();
 }

 _;
 }

13​ Immunefi Audits​ Immunefi / Plume Network

​

The lastSpinTimestamp is validated against the current day, but, lastSpinTimestamp is only updated after the

randomness callback is received from Supra.

This allows users to call startSpin multiple times before the callback is processed, resulting in multiple

concurrent spins on the same day for the same user.

Recommendation

Update lastSpinTimestamp as soon as startSpin is called, not after the callback.

14​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-05
Looping over unbounded arrays - Multiple issues including slashing evasion #11

Id IMM-CRIT-05

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: Multiple locations

Several functions across the staking system iterate over arrays whose lengths are not explicitly bounded.

This practice can lead to excessive gas consumption and, in some cases, cause the function to revert due

to block gas limits. In some scenarios, malicious actors or even regular users can exploit these unbounded

loops to prevent critical protocol actions, such as slashing, unstaking, or claiming rewards.

Below is a summary of the most significant unbounded loops, ranked by severity:

1.​ ValidatorFacet.sol::slashValidator​
CRITICAL — Iterates over $.validatorIds, $.rewardTokens, and $.validatorStakers. Since

$.validatorStakers can be manipulated by anyone (anyone can stake), a malicious validator could

inflate this array to prevent themselves from being slashed.​

2.​ PlumeValidatorLogic.sol::removeStakerFromValidator​
MEDIUM — Iterates over all validatorStakers to pop a staker. If the array is too large, honest users

may be unable to unstake.​

3.​ RewardsFacet.sol

a.​ Iterates over all $.validatorIds and $.rewardTokens.

b.​ MEDIUM: May prevent adding or removing reward tokens.

c.​ INSIGHT: Can cause claimAll or claim(token) to fail, though normal claims still work.​

4.​ StakingFacet.sol::restakeRewards​
LOW — Iterates over all userValidators, which is user-controlled. Excessive entries may cause

15​ Immunefi Audits​ Immunefi / Plume Network

​

user-initiated failures.​

5.​ PlumeRewardLogic.sol::updateRewardsForValidator​
INSIGHT — Iterates over all $.rewardTokens (protocol-controlled), so risk is minimal.​

6.​ ManagementFacet.sol::adminCorrectUserStakeInfo​
INSIGHT — Iterates over all validatorIds for a single user. If it reverts, it only affects syncing of

stakeInfo and userValidatorStakes, which is not a real problem since stakeInfo and

userValidatorStakes are synced anyways.​

7.​ ValidatorFacet.sol::_updateRewardsForAllValidatorStakers​
INSIGHT — Iterates over all $.validatorStakers, but this function already reverts if the array is

bigger than 100 (see IMM-CRIT-09).

Recommendation

●​ Avoid iterating over unbounded arrays wherever possible. Use mappings and checkpointing

mechanisms to track state efficiently.

●​ If iteration over an array is unavoidable, enforce a strict upper bound (e.g., 100 elements) on the

array's length. Always check the array length before allowing new entries.

16​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-06
Reward Distribution Is Unrelated to Amount Added With addRewards #9

Id IMM-CRIT-06

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: RewardsFacet.sol::addRewards, _transferRewardFromTreasury

The amount of rewards distributed to users is not actually limited or affected by the amount added via

addRewards. When addRewards is called, the amount is used to increment the rewardsAvailable variable:

function addRewards(
 address token,
 uint256 amount
) external payable virtual nonReentrant onlyRole(PlumeRoles.REWARD_MANAGER_ROLE) {
 PlumeStakingStorage.Layout storage $ = plumeStorage();
 if (!$.isRewardToken[token]) {
 revert TokenDoesNotExist(token);
 }

 address treasury = getTreasuryAddress();
 if (treasury == address(0)) {
 revert TreasuryNotSet();
 }

 // Check if treasury has sufficient funds - direct balance check
 if (token == PLUME) {
 // For native PLUME, check the treasury's ETH balance
 if (treasury.balance < amount) {
 revert InsufficientBalance(token, treasury.balance, amount);
 }
 } else {
 // For ERC20 tokens, check the token balance

17​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

 uint256 treasuryBalance = IERC20(token).balanceOf(treasury);
 if (treasuryBalance < amount) {
 revert InsufficientBalance(token, treasuryBalance, amount);
 }
 }

 uint16[] memory validatorIds = $.validatorIds;
 for (uint256 i = 0; i < validatorIds.length; i++) {
 // Use library function to update validator cumulative index
 PlumeRewardLogic.updateRewardPerTokenForValidator($, token, validatorIds[i]);
 }

 // Only update the accounting - actual funds remain in the treasury
 $.rewardsAvailable[token] += amount;
 emit RewardsAdded(token, amount);
 }

However, rewardsAvailable is not enforced as a limit when transferring rewards to users nor does it change

the actual amount of rewards. The actual transfer logic is as follows:

function _transferRewardFromTreasury(address token, uint256 amount, address recipient)
internal {
 address treasury = getTreasuryAddress();
 if (treasury == address(0)) {
 revert TreasuryNotSet();
 }

 // Make the treasury send the rewards directly to the user
 IPlumeStakingRewardTreasury(treasury).distributeReward(token, amount, recipient);

 // Update accounting
 PlumeStakingStorage.Layout storage $ = plumeStorage();
 $.rewardsAvailable[token] = ($.rewardsAvailable[token] > amount) ?
$.rewardsAvailable[token] - amount : 0;
}

If the amount transferred is greater than rewardsAvailable, the transfer will simply continue as normal and

zero out rewardsAvailable so it has no effect on the actual rewards calculation nor does it prevent rewards

18​ Immunefi Audits​ Immunefi / Plume Network

​

bigger than rewardsAvailable from being transferred.

Recommendation

●​ Review all reward calculation logic to use the actual amount of rewards available via

rewardsAvailable.

●​ Prevent transfers of rewards that would cause rewardsAvailable to go below zero.

19​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-07
No Rewards Accrued Due to Zero Validator Stake #8

Id IMM-CRIT-07

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: PlumeRewardLogic.sol::updateRewardPerTokenForValidator

The validatorRewardPerTokenCumulative value is always zero because it depends on

$.validatorTotalStaked[validatorId], which is never incremented and remains at zero. As a result, the

reward calculation logic never updates the cumulative reward per token:

uint256 totalStaked = $.validatorTotalStaked[validatorId];
if (totalStaked > 0) {
 uint256 lastUpdate = $.validatorLastUpdateTimes[validatorId][token];
 if (block.timestamp > lastUpdate) {
 uint256 timeDelta = block.timestamp - lastUpdate;
 uint256 effectiveRate = $.rewardRates[token];
 if (effectiveRate > 0) {
 uint256 numerator = timeDelta * effectiveRate * REWARD_PRECISION;
 uint256 reward = numerator / totalStaked;
 $.validatorRewardPerTokenCumulative[validatorId][token] += reward;
 }
 }
}
$.validatorLastUpdateTimes[validatorId][token] = block.timestamp;

Since totalStaked is always zero, the update block is never executed, and no rewards are ever accrued for

any validator or staker.

20​ Immunefi Audits​ Immunefi / Plume Network

​

Recommendation

●​ Ensure that $.validatorTotalStaked[validatorId] is correctly updated whenever users stake is

updated, so that rewards can be properly accrued and distributed.

●​ Review all staking and reward logic to maintain consistency between stake tracking and reward

calculations.

21​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-08
Slashing Reverts Due to totalStaked being 0 #7

Id IMM-CRIT-08

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::slashValidator

The global staking total, $.totalStaked, is never incremented and remains at zero. If a nonzero

penaltyAmount is ever calculated during slashing, the following code will revert due to an underflow:

uint256 penaltyAmount = $.validatorTotalStaked[validatorId];
if (penaltyAmount > 0) {
 $.totalStaked -= penaltyAmount; // Underflows and reverts if $.totalStaked is 0
 $.validatorTotalStaked[validatorId] = 0;
 address[] storage stakers = $.validatorStakers[validatorId];
 for (uint256 i = 0; i < stakers.length; i++) {
 $.userValidatorStakes[stakers[i]][validatorId].staked = 0;
 }
}

Because $.totalStaked is zero, subtracting any positive penaltyAmount will cause an underflow and revert

the transaction, preventing slashing from executing as intended.

Since currently penaltyAmount is always 0, this issue is not currently exploitable. But it can be exploited in

the future and needs to be addressed.

Recommendation

Ensure that $.totalStaked is correctly incremented whenever users stake, so it accurately reflects the total

22​ Immunefi Audits​ Immunefi / Plume Network

​

staked amount across all validators.

23​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-09
Slashing Does Not Burn Staked Funds Due to Zeroed Validator Total #6

Id IMM-CRIT-09

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::slashValidator

The core slashing functionality is ineffective because $.validatorTotalStaked[validatorId] is always zero

(there is no place where it's incremented) when slashValidator is called. As a result, the calculated

penaltyAmount is zero, and the code that zeroes out individual user stakes is never executed:

 uint256 penaltyAmount = $.validatorTotalStaked[validatorId];
 if (penaltyAmount > 0) {
 $.totalStaked -= penaltyAmount;
 $.validatorTotalStaked[validatorId] = 0;

 address[] storage stakers = $.validatorStakers[validatorId];
 for (uint256 i = 0; i < stakers.length; i++) {
 $.userValidatorStakes[stakers[i]][validatorId].staked = 0;
 }
 }

Because penaltyAmount is always zero, the intended penalty — burning all staked funds for the slashed

validator — is never applied, and user stakes remain untouched.

Recommendation

Increment $.validatorTotalStaked[validatorId] every time userValidatorStakes is updated.

24​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-10
Uninitialized Reward Timestamp Allows Excessive Reward Claims for New Validators

and Draining PlumeStakingRewardTreasury #5

Id IMM-CRIT-10

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::addValidator, PlumeRewardLogic::updateRewardPerTokenForValidator

When a new validator is added via addValidator, the contract does not initialize the

validatorLastUpdateTimes mapping for the new validator and each reward token.

As a result, when updateRewardPerTokenForValidator is called for the first time, the timeDelta is calculated

from block timestamp to the default value of zero (the Unix epoch), resulting in an excessively large

timeDelta. (timeDelta = block.timestamp - 0):

uint256 lastUpdate = $.validatorLastUpdateTimes[validatorId][token];
if (block.timestamp > lastUpdate) {
 uint256 timeDelta = block.timestamp - lastUpdate; // block.timestamp - 0
 uint256 effectiveRate = $.rewardRates[token];
 if (effectiveRate > 0) {
 uint256 numerator = timeDelta * effectiveRate * REWARD_PRECISION;
 uint256 reward = numerator / totalStaked; // the reward will be huge
 $.validatorRewardPerTokenCumulative[validatorId][token] += reward;
 }

This timeDelta results in a huge rewardPerTokenDelta, allowing users to claim rewards as if the validator

had existed since timestamp zero. This can lead to users draining all available reward funds from the

protocol. Draining PlumeStakingRewardTreasury

25​ Immunefi Audits​ Immunefi / Plume Network

​

Recommendation

In addValidator, ensure that validatorLastUpdateTimes is set to the current block timestamp for each

reward token when a new validator is added.

26​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-11
Slashing Penalty Evasion via Commission Claim #4

Id IMM-CRIT-11

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::claimValidatorCommission

A malicious validator can frontrun a slashing transaction by calling claimValidatorCommission immediately

before being slashed. This allows the validator to withdraw their commission rewards before their balance

is zeroed out, effectively evading the intended penalty and reducing the effectiveness of the slashing

mechanism.

Recommendation

●​ Implement a cooldown period for claimValidatorCommission requests.

●​ Ensure the slashing vote duration is strictly shorter than the cooldown period, otherwise the

malicious validator can claim their commission before the slashing vote is finalized.

27​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-12
Stakers Can Bypass Slashing #3

Id IMM-CRIT-12

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: StakingFacet.sol::unstake, ValidatorFacet.sol::slashValidator

Stakers are currently able to evade slashing penalties by frontrunning the slashValidator function or by

noticing the slashing vote before it is finalized. Once a slashing vote is initiated or even detectable

on-chain, users have a window of opportunity to call unstake, which moves their funds into the cooled

state:

amountUnstaked = amount > info.staked ? info.staked : amount;

// ... unrelevant code for this issue ...

$.validators[validatorId].delegatedAmount -= amountUnstaked;

// ... unrelevant code for this issue ...

globalInfo.cooled += amountUnstaked;

Because slashing currently does not affect funds that are cooling down, users can effectively protect their

stake from being slashed by quickly unstaking during or immediately after a slashing vote starts, as long as

they unstake before slashValidator is called.

Recommendation

1.​ Introduce a new storage mapping similar to $.userValidatorStakes, such as

$.userValidatorCooling, to track cooldown balances on a per-validator basis.

28​ Immunefi Audits​ Immunefi / Plume Network

​

2.​ During unstake, record the unstaked amount into this new mapping instead of marking it as globally

cooled.

3.​ Modify slashValidator to also reduce funds from the userValidatorCooling mapping associated

with the slashed validator.

​
The last recommendation is very important:

4.​ Ensure the slashing vote duration is strictly shorter than the cooldown period, otherwise users will

be able to unstake and get their funds back before the slashing vote is finalized.

29​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

TypeScript

​

IMM-CRIT-13
Incorrect Reward Accounting Allows Multiple Claims #2

Id IMM-CRIT-13

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: RewardsFacet.sol::claim, claimAll

When a user claims rewards, the contract sets userValidatorRewardPerTokenPaid to the current value of

validatorRewardPerTokenCumulative to track the latest reward per token amount claimed:

$.userValidatorRewardPerTokenPaid[user][validatorId][token] =
 $.validatorRewardPerTokenCumulative[validatorId][token];

However, during reward calculation in calculateRewardsWithCheckpoints, if

validatorRewardPerTokenCumulative is outdated, the function computes an up-to-date value locally (using

currentCumulativeIndex) but does not update the stored validatorRewardPerTokenCumulative:

uint256 currentCumulativeIndex = $.validatorRewardPerTokenCumulative[validatorId][token];
uint256 lastUpdateTime = $.validatorLastUpdateTimes[validatorId][token];
if (block.timestamp > lastUpdateTime && $.validatorTotalStaked[validatorId] > 0) {
 uint256 timeDelta = block.timestamp - lastUpdateTime;
 uint256 effectiveRate = $.rewardRates[token];
 if (effectiveRate > 0) {
 uint256 numerator = timeDelta * effectiveRate * REWARD_PRECISION;
 currentCumulativeIndex += numerator / $.validatorTotalStaked[validatorId];
 }

30​ Immunefi Audits​ Immunefi / Plume Network

​

}

As a result, the user's userValidatorRewardPerTokenPaid is set to the old, un-updated value. On subsequent

claims, the rewardPerTokenDelta is calculated using this stale value, allowing users to repeatedly claim

additional rewards they are not entitled to.

Recommendation

Ensure that validatorRewardPerTokenCumulative is updated before any reward claim action, either by calling

updateRewardPerTokenForValidator directly or by using a modifier to enforce this update.

31​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-14
Theft of Funds From PlumeStakingRewardTreasury #1

Id IMM-CRIT-14

Severity Critical

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: StakingFacet.sol::stake, restake, stakeOnBehalf, restakeRewards

The staking functions do not update userValidatorRewardPerTokenPaid when a user stakes. As a result, this

variable remains at its default value (zero), which causes the reward calculation to treat the user as if they

had been staked since the beginning of the reward period.

As a result, when the user immediately calls claim, the reward calculation uses the default value (zero) for

userValidatorRewardPerTokenPaid:

uint256 lastPaidCumulativeIndex =
$.userValidatorRewardPerTokenPaid[user][validatorId][token];

uint256 rewardPerTokenDelta = currentCumulativeIndex - lastPaidCumulativeIndex; //
currentCumulativeIndex - 0

An attacker can exploit this by staking and then immediately calling claim, receiving the full accumulated

rewards they were never entitled to. They can then even immediately unstake — all in a single transaction,

putting no attacker funds at risk — and then repeat this process draining the PlumeStakingRewardTreasury.

Recommendation

●​ Ensure userValidatorRewardPerTokenPaid and userValidatorRewardPerTokenPaidTimestamp are

updated when staking.

32​ Immunefi Audits​ Immunefi / Plume Network

​

Better yet:

●​ Call updateRewardsForValidator before any staking action to ensure rewards are properly accounted

for.

●​ Consider abstracting this into a modifier or internal helper to enforce consistency across all

staking-related functions.

33​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-HIGH-01
Changing Purchase Token Does Not Invalidate Existing Sales or Prices #35

Id IMM-HIGH-01

Severity High

Category Bug

Status
Fixed in
77d09cf9c18a25b3f82c0a4a83a908c5c99d355e

Description

Code Affected: ArcTokenPurchase.sol::setPurchaseToken

The setPurchaseToken function in ArcTokenPurchase.sol allows the purchase token to be changed. However,

changing the purchase token does not invalidate or update existing sales or prices, which may lead to

inconsistencies or unexpected behavior for sellers who have posted sales.

Recommendation

Ensure that changing the purchase token properly invalidates any existing sales or prices.

34​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-HIGH-02
No Validation of Token Origin in enableToken #34

Id IMM-HIGH-02

Severity High

Category Bug

Status Fixed in c3acabfbc8fe626a9febda09619231302a76557c

Description

Code Affected: ArcTokenPurchase.sol::enableToken

When calling enableToken on the ArcTokenPurchase contract, there is no check to ensure that the token

being enabled was actually deployed by the factory and is a valid ArcToken. The only check performed is

that the caller is the token admin:

 modifier onlyTokenAdmin(
 address _tokenContract
) {
 address adminRoleHolder = msg.sender;
 bytes32 adminRole = ArcToken(_tokenContract).ADMIN_ROLE();
 if (!ArcToken(_tokenContract).hasRole(adminRole, adminRoleHolder)) {
 revert NotTokenAdmin(adminRoleHolder, _tokenContract);
 }
 _;
 }

This check is insufficient, as anyone can deploy a contract with a hasRole function that always returns true,

allowing them to call enableToken and list fake or malicious tokens for sale.

Recommendation

●​ Add a check in enableToken to ensure that the token was deployed by the official factory and is a

valid ArcToken.

●​ Maintain a registry of valid tokens deployed by the factory and verify against it before enabling a

token for sale.

35​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-HIGH-03
Unused jackpotThreshold in Reward Probability Calculation #24

Id IMM-HIGH-03

Severity High

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: Spin.sol::determineReward

When determining the reward, the jackpotThreshold field in rewardProbabilities appears to be unused:

function determineReward(uint256 randomness, address user) internal view returns (string
memory, uint256) {
 // ... non relevant code for this issue ...
 uint256 jackpotThreshold = jackpotProbabilities[dayOfWeek];

 if (probability < jackpotThreshold) { // no use of
`rewardProbabilities.jackpotThreshold`
 return ("Jackpot", jackpotPrizes[weekNumber]);
 }

 // ... non relevant code for this issue ...
 }

As a result, the calculation for jackpot chances relies solely on jackpotProbabilities, which is set to very

low values and does not reflect intended game dynamics.

Recommendation

●​ Either remove jackpotThreshold if it is unnecessary, or ensure it is properly integrated into the

jackpot probability calculation.

●​ Review and adjust jackpot probability logic to match intended odds.

36​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-HIGH-04
Reward Rate Updates Are Applied Retroactively #13

Id IMM-HIGH-04

Severity High

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: RewardsFacet.sol::setRewardRates, PlumeRewardLogic.calculateRewardsWithCheckpoints

When the setRewardRates function is called to update the reward rate for a token, it does not update users'

userValidatorRewardPerTokenPaid values. As a result, when users later call claim, the reward calculation

uses the new reward rate retroactively for the entire period since their last claim, rather than only for the

period after the rate was updated.

For reference, in setRewardRates:

for (uint256 j = 0; j < validatorIds.length; j++) {
 uint16 validatorId = validatorIds[j];
 PlumeRewardLogic.updateRewardPerTokenForValidator($, token, validatorId);
 PlumeRewardLogic.createRewardRateCheckpoint($, token, validatorId, rate);
}
$.rewardRates[token] = rate;

No update is made to users' userValidatorRewardPerTokenPaid values, so the new rate is applied to all

unclaimed rewards, regardless of when they were accrued.

This can result in users receiving more (or less) rewards than intended, depending on whether the reward

rate was increased or decreased.

Recommendation

When updating the reward rate, ensure that users' reward accounting is updated so that the new rate only

37​ Immunefi Audits​ Immunefi / Plume Network

​

applies to rewards accrued after the change.

This can be done in two ways:

1.​ Update all users' userValidatorRewardPerTokenPaid to the current cumulative value before the rate

change (not recommended as it requires more gas and risks running out of gas for large numbers of

users)

2.​ Implement checkpoints for rewards calculations. This is the recommended approach.

38​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-HIGH-05
Cannot Claim Accrued Rewards for Deactivated Tokens #12

Id IMM-HIGH-05

Severity High

Category Bug

Status Fixed in 59c81c5f2a52f89fba1ed77bc3b37450f57d5097

Description

Code Affected: RewardsFacet.sol::removeRewardToken, RewardsFacet.sol::claim, claimAll

When a reward token is deactivated via removeRewardToken, the contract updates the reward state for that

token using updateRewardPerTokenForValidator, ensuring that all rewards accrued up to that point are

properly accounted for:

 function removeRewardToken(
 address token
) external onlyRole(PlumeRoles.REWARD_MANAGER_ROLE) {
 PlumeStakingStorage.Layout storage $ = plumeStorage();
 if (!$.isRewardToken[token]) {
 revert TokenDoesNotExist(token);
 }

 // Find the index of the token in the array
 uint256 tokenIndex = _getTokenIndex(token);

 // Update rewards using the library before removing
 for (uint256 i = 0; i < $.validatorIds.length; i++) {
 // Needs to update the cumulative index, not user rewards
 PlumeRewardLogic.updateRewardPerTokenForValidator($, token, $.validatorIds[i]);
 }
 $.rewardRates[token] = 0;

 // Update the array
 $.rewardTokens[tokenIndex] = $.rewardTokens[$.rewardTokens.length - 1];

39​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

 $.rewardTokens.pop();

 // Update the mapping
 $.isRewardToken[token] = false;

 delete $.maxRewardRates[token];
 emit RewardTokenRemoved(token);
 }

However, after deactivation, $.isRewardToken[token] is set to false. As a result, any attempt to claim

rewards for the deactivated token will revert, since all claim functions check this flag:

 function claim(address token, uint16 validatorId) external nonReentrant returns (uint256)
{
 PlumeStakingStorage.Layout storage $ = plumeStorage();
 if (!$.isRewardToken[token]) {
 revert TokenDoesNotExist(token);
 }
 }

This prevents users from claiming rewards they rightfully earned before the token was removed.

Recommendation

●​ Allow users to claim any accrued rewards for tokens that have been deactivated, even after

removeRewardToken is called.

●​ Consider tracking a separate state for "historical" reward tokens that allows claims but prevents

new rewards from accruing.

40​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-HIGH-06
Unbounded Staker Count Can Prevent Validator Commission Claims #10

Id IMM-HIGH-06

Severity High

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::claimValidatorCommission

The claimValidatorCommission function allows validators to claim their commission rewards. However, if a

validator has more than 100 stakers, this function will revert due to its reliance on the underlying

_updateRewardsForAllValidatorStakers function, which contains the following check:

if (stakers.length > 100) {
 revert TooManyStakers();
}

Currently, there is no restriction on the number of stakers that can delegate to a validator — only a limit on

the total delegated amount (maxCapacity). This means a validator can accumulate more than 100 stakers,

after which it becomes impossible to claim commission rewards, effectively bricking the validator's

commission functionality.

Recommendation

●​ In general, avoid iterating over unbounded arrays, as this can lead to reverts due to gas limitations

and denial of service.

●​ Implement a mechanism such as working checkpoints to track rewards without requiring iteration

over the entire stakers array.

●​ If iteration is unavoidable, enforce an upper bound (e.g., 100) on the number of stakers per validator

by checking the array length before allowing new stakers to join.

41​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-01
Seller Does Not Receive Revenue from ArcToken Sales #37

Id IMM-MED-01

Severity Medium

Category Bug

Status Acknowledged

Description

Code Affected: ArcTokenPurchase.sol::buy

When an ArcToken is bought, the seller does not receive the revenue from the sale. Instead, the buyer's

tokens are transferred to the ArcTokenPurchase contract itself, rather than being forwarded to the intended

seller or beneficiary.

The only functions to withdraw tokens from the ArcTokenPurchase contract are controlled by the

ArcTokenPurchase admin and not the token seller.

This results in the seller not being compensated for the tokens sold, and the funds remaining locked in the

contract.

Recommendation

Ensure that, upon purchase, the payment is correctly forwarded to the seller or designated beneficiary.

42​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-02
Unsold ArcToken Withdrawal Restricted to Contract Admin #36

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 57595d2c983af9db583cc48b52aac5339af1a4bc

Description

Code Affected: ArcTokenPurchase.sol::withdrawUnsoldArcTokens

The withdrawUnsoldArcTokens function in ArcTokenPurchase is only callable by the contract admin, not by

the ArcToken admin. This restricts the ability to withdraw unsold ArcTokens, potentially preventing the

ArcToken admin from managing their own token supply after a partial sale.

Recommendation

●​ Provide a mechanism for the ArcToken admin to withdraw unsold ArcTokens.

●​ In general, provide a mechanism for the ArcToken admin to manage their token sale (such as setting

isEnabled to false, etc).

43​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-03
Missing minStakeAmount Enforcement in restakeRewards #20

Id IMM-MED-03

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: StakingFacet.sol::restakeRewards

The restakeRewards function does not enforce the minStakeAmount constraint for validators. As a result,

users can restake rewards that are less than the minimum stake amount, bypassing the restriction that is

properly enforced in other staking functions such as stake, restake, and stakeOnBehalf.

Recommendation

●​ Add a validation check in restakeRewards to ensure that the amount being restaked is greater than

or equal to minStakeAmount.

●​ Refactor staking-related functions to share core logic.

44​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-MED-04
Single Admin Can Only Vote With One Validator Due to Mapping Overwrite #19

Id IMM-MED-04

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::addValidator, ValidatorFacet.sol::voteToSlashValidator

The addValidator function does not check whether adminToValidatorId[l2AdminAddress] is already set.

This allows the same admin address to be assigned to multiple validators. However, each new assignment

overwrites the previous mapping.

This has a critical impact on the slashing process. The voteToSlashValidator function relies on the

adminToValidatorId mapping to determine the identity of the voting validator:

address voterAdmin = msg.sender;
uint16 voterValidatorId = $.adminToValidatorId[voterAdmin];
// ...
if ($.validators[voterValidatorId].l2AdminAddress != voterAdmin ||
!$.validators[voterValidatorId].active) {
 revert NotValidatorAdmin(voterAdmin);
 }
if (voterValidatorId == maliciousValidatorId) {
 revert CannotVoteForSelf();
}

If an honest admin controls multiple validators, they will only be able to vote using one of their validators,

not all of them. This prevents unanimity from being reached in slashValidator, potentially allowing a

malicious validator to evade slashing.

45​ Immunefi Audits​ Immunefi / Plume Network

​

Recommendation

In addValidator, check that adminToValidatorId[l2AdminAddress] is not already set to prevent assigning the

same admin to multiple validators.

Or alternatively, allow multiple validators per admin, maybe via a mapping new adminToValidatorIds

address => uint16[] array.

B bondETH

46​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-MED-05
Users Lose Rewards When Calling restakeRewards #18

Id IMM-MED-05

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: StakingFacet.sol::restakeRewards

During the restakeRewards process, the function retrieves the pending reward delta using

getPendingRewardForValidator, but then zeroes out the entire reward balance for the user, causing users to

lose any previously accrued (but unclaimed) rewards:

uint256 validatorReward =
 RewardsFacet(payable(address(this))).getPendingRewardForValidator(msg.sender,
userValidatorId, token);

if (validatorReward > 0) {
 amountRestaked += validatorReward;

 PlumeRewardLogic.updateRewardsForValidator($, msg.sender, userValidatorId);

 $.userRewards[msg.sender][userValidatorId][token] = 0; // Zero out the entire reward
balance without using it for restaking

 emit RewardClaimedFromValidator(msg.sender, token, userValidatorId, validatorReward);
}

As a result, any rewards accrued prior to the current delta are lost when a user calls restakeRewards.

Recommendation

Ensure that all unclaimed rewards (not just the current delta) are included when restaking, so users do not

47​ Immunefi Audits​ Immunefi / Plume Network

​

lose previously accrued rewards.

48​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-06
Validator Commission Rate Can Be Set to 100% #17

Id IMM-MED-06

Severity Medium

Category Bug

Status
Fixed in
a192bbcdc4009c3f48d23d2840a99695785b6031

Description

Code Affected: ValidatorFacet.sol::setValidatorCommission, ValidatorFacet.sol::addValidator

There is currently no restriction preventing a validator's commission rate from being set to 100%. Both the

addValidator and setValidatorCommission functions allow any value up to and including 100% (represented

as 1e18), meaning a validator can claim all rewards for themselves and leave stakers with nothing.

If the commission rate is set to 100%, users who stake with that validator will not receive any rewards and

thus the validator won't receive any rewards either (since the commission is taken only when the user

claims their rewards and the reward is not 0).

Recommendation

Impose an upper limit on the validator commission rate (e.g., less than 100%, for example 30%) in both

addValidator and setValidatorCommission.

49​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-07
Slashed Validators Are Still Useable In the Protocol #16

Id IMM-MED-07

Severity Medium

Category Bug

Status Fixed in 3d899831cf556f4d7d3311f830c439d0fa6f2b16

Description

Code Affected: Multiple locations (e.g., StakingFacet.sol::stake,

ValidatorFacet.sol::claimValidatorCommission)

After a validator is slashed, its status is set to validator.slashed = true and validator.active = false.

However, many protocol functions do not consistently check whether a validator is slashed or inactive

before allowing further actions.

For example:

Users can still stake a slashed validator, even though it is no longer considered active.

A slashed validator can still call claimValidatorCommission and withdraw accrued commission rewards.

This undermines the intended consequences of slashing and can lead to unexpected or insecure protocol

behavior.

Recommendation

●​ Ensure that all functions which interact with validators (such as staking, claiming rewards, or

updating validator data) include checks to prevent actions involving slashed or inactive validators.

●​ Consider centralizing these checks in modifiers or internal helpers to enforce consistent validation

across the codebase.

50​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-MED-08
Temporary Slashing Evasion via Admin Assignment #15

Id IMM-MED-08

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::setValidatorAddresses

The setValidatorAddresses function allows updating a validator's admin address without verifying that the

newL2AdminAddress has consented to this role. If the newL2AdminAddress is already the admin of another

validator, this operation will overwrite the adminToValidatorId mapping.

This has a critical impact on the slashing process. The voteToSlashValidator function relies on the

adminToValidatorId mapping to determine the identity of the voting validator. A malicious validator can

assign another validator's admin as their own, preventing that admin from voting to slash the malicious

validator due to the following check:

address voterAdmin = msg.sender;
uint16 voterValidatorId = $.adminToValidatorId[voterAdmin];

// ...

if (voterValidatorId == maliciousValidatorId) {
 revert CannotVoteForSelf();
}

This prevents unanimity from being reached in slashValidator, effectively allowing the malicious validator

to evade slashing.

Since the victim admin can restore their voting rights by reassigning their admin address through an

intermediate step, this issue is not critical.

51​ Immunefi Audits​ Immunefi / Plume Network

​

Recommendation

Require explicit consent from the newL2AdminAddress before assigning them as a validator admin. This can

be achieved by requiring a signature from the new admin or by implementing an acceptAdmin function that

the new admin must call to confirm the assignment.

52​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-09
Missing maxCapacity Enforcement in restakeRewards #14

Id IMM-MED-09

Severity Medium

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: StakingFacet.sol::restakeRewards

The restakeRewards function does not enforce the maxCapacity constraint for validators. As a result, users

can restake rewards and exceed the intended maximum delegation limit for a validator, bypassing the

restriction that is properly enforced in other staking functions such as stake, restake, and stakeOnBehalf.

Recommendation

●​ Add a validation check in restakeRewards to ensure that if maxCapacity is not zero, the new

delegated amount does not exceed maxCapacity.

●​ Refactor staking-related functions to share core logic.

53​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-LOW-01
Restriction Contracts Are Not Used as Upgradeable Proxies #39

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in 23bd73bde60fe5aef38d383f492dee1cb7b24d86

Description

Code Affected: ArcTokenFactory.sol::createToken, WhitelistRestrictions.sol,

YieldBlacklistRestrictions.sol

When creating a new token, the ArcTokenFactory also creates new instances of WhitelistRestrictions and

YieldBlacklistRestrictions as upgradeable proxies. However, the ArcToken contract uses the

implementation contracts directly, rather than deploying and interacting with proxy instances.

As a result, the implementation contracts are initialized and used directly. Due to the onlyProxy modifier

from UUPSUpgradeable, upgrade attempts on the implementation contracts will revert:

function _checkProxy() internal view virtual {
 if (
 address(this) == __self || // Must be called through delegatecall
 ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
 revert UUPSUnauthorizedCallContext();
 }
}

Since the implementations are not used as proxies, the _checkProxy function will revert due to the

address(this) == __self check.

Recommendation

Use upgradeable proxies for the WhitelistRestrictions and YieldBlacklistRestrictions instances as

54​ Immunefi Audits​ Immunefi / Plume Network

​

intended.

55​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-LOW-02
Distributor Can Direct Yield to Specific Holders #38

Id IMM-LOW-02

Severity LOW

Category Bug

Status Acknowledged

Description

Code Affected: ArcToken.sol::distributeYieldWithLimit

The YIELD_DISTRIBUTOR_ROLE in the ArcToken contract can send arbitrary yield to any specific holder by

using the distributeYieldWithLimit function. This allows the distributor to allocate all yield to a single

holder, rather than distributing it fairly among all holders.

For example, the distributor can call:

distributeYieldWithLimit(totalAmount, startIndex, maxHolders)
// where totalAmount = (x * effectiveTotalSupply) / holderBalance, startIndex = i, maxHolders
= 1

and transfer x yield tokens to the contract beforehand. This results in only the selected holder receiving the

yield, while other holders may receive nothing.

This undermines the fairness and intended distribution of yield among all token holders.

Recommendation

Consider using checkpoint mechanisms to ensure fair distribution of yield.

56​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-03
Spin Does Not Auto-End After 12 Weeks #27

Id IMM-LOW-03

Severity LOW

Category Bug

Status Acknowledged

Description

Code Affected: Spin.sol - Spin duration and reward logic

The spin game does not automatically end after 12 weeks, allowing non-jackpot rewards to continue being

farmed indefinitely.

Recommendation

Implement logic to automatically end the spin game after the intended duration (e.g., 12 weeks).

57​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-01
Code Redundancy, Dead Code, and Code Duplication in Arc #44

Id IMM-INSIGHT-01

Severity INSIGHT

Category Informational

Status Fixed in 303694c82cad48cc5788d73b200159887a71318f

Description

Code Affected: Multiple locations (e.g., ArcToken.sol)

There are various instances of code redundancy, dead code, and duplication throughout the project, which

can lead to maintenance challenges, increased risk of bugs, and unnecessary contract size.

Redundancy

1.​ ⁠previewYieldDistributionWithLimit has amounts = new uint256[](batchSize); twice

2.​ In ArcTokenFactory.sol the restrictionsRouter storage variable is redundant, just use

fs.restrictionsRouter and create a view function to return it.

Dead Code

RestrictionsFactory is not used at all anywhere.

Duplication

1.​ The underlying login in all of ArcToken.sol::previewYieldDistribution,

ArcToken.sol::previewYieldDistributionWithLimit, ArcToken.sol::distributeYield, and

ArcToken.sol::distributeYieldWithLimit is the same.

2.​ TRANSFER_RESTRICTION_TYPE and YIELD_RESTRICTION_TYPE are defined both in ArcToken.sol and

ArcTokenFactory.sol.

Recommendation

Remove duplicated and redundant code to improve maintainability and reduce contract size.

58​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-INSIGHT-02
ArcToken Implementation Can Be Initialized by Anyone #43

Id IMM-INSIGHT-02

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Code Affected: ArcTokenFactory.sol::createToken, ArcToken.sol

In ArcTokenFactory.sol, the implementation contracts for ArcTokens are never initialized. This allows an

attacker to call initialize on the implementation contract directly. Thanks to the But, the onlyProxy modifier

from the UUPSUpgradeable contract, implementations cannot be upgraded.

The onlyProxy modifier calls _checkProxy function:

 function _checkProxy() internal view virtual {
 if (
 address(this) == __self || // Must be called through delegatecall
 ERC1967Utils.getImplementation() != __self // Must be called through an active
proxy
) {
 revert UUPSUnauthorizedCallContext();
 }
 }

Since the implementations are not used as proxies, the _checkProxy function will revert due to the

address(this) == __self check.

This check prevents unauthorized upgrades or self-destruction on the implementation contract. Which

makes it safe to not initialize the implementation contract.

But, it is best practice to prevent any initialization of the implementation contract for safety.

59​ Immunefi Audits​ Immunefi / Plume Network

​

Recommendation

●​ Either Call _disableInitializers() in the constructor of the ArcToken implementation (and in

general for all upgradeable contracts) - This is the best practice.

●​ Or, call initialize on the implementation contract after deployment.

60​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-03
Use of initializer Instead of reinitializer in Upgradeable Contract #42

Id IMM-INSIGHT-03

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Code Affected: Upgradeable contract initialization logic

All of the upgradeable contracts use the initializer modifier to protect its initialization function. While this

prevents re-initialization, it does not support future upgrades that may require additional initialization steps

Since the contract is upgradeable, using reinitializer(version) is recommended to allow safe, versioned

initialization for future upgrades.

Recommendation

Replace the initializer modifier with reinitializer(version) in upgradeable contracts to support safe,

versioned initialization during upgrades.

61​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-04
Preview Functions Are Not Marked as view #41

Id IMM-INSIGHT-04

Severity INSIGHT

Category Informational

Status Fixed in 2360d5e6d0124e1b806b7ce7b77f0790ef924d47

Description

Code Affected: ArcToken.sol::previewYieldDistribution, previewYieldDistributionWithLimit

In ArcToken.sol, the functions previewYieldDistribution and previewYieldDistributionWithLimit are

intended to provide a read-only preview of yield distribution outcomes. However, these functions are not

marked as views.

Recommendation

Mark previewYieldDistribution and previewYieldDistributionWithLimit as view functions to clearly

indicate that they do not modify contract state.

62​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-INSIGHT-05
Deployer Cannot Manage Roles After Token Creation #40

Id IMM-INSIGHT-05

Severity INSIGHT

Category Informational

Status Fixed in 0dd791f5a8b37ce85f7bb8d8f0e09c05c8d5ac15

Description

Code Affected: ArcTokenFactory, role assignment logic

When creating a new token, the ArcTokenFactory grants all major roles to the deployer (msg.sender):

token.grantRole(token.ADMIN_ROLE(), msg.sender);
token.grantRole(token.MANAGER_ROLE(), msg.sender);
token.grantRole(token.YIELD_MANAGER_ROLE(), msg.sender);
token.grantRole(token.YIELD_DISTRIBUTOR_ROLE(), msg.sender);
token.grantRole(token.MINTER_ROLE(), msg.sender);
token.grantRole(token.BURNER_ROLE(), msg.sender);
token.grantRole(token.UPGRADER_ROLE(), msg.sender);

However, the deployer is not granted the DEFAULT_ADMIN_ROLE, which is required to grant or revoke roles. As

a result, the deployer cannot delegate or renounce these roles, leading to a risk of centralization and lack of

flexibility in role management.

Recommendation

●​ Grant the DEFAULT_ADMIN_ROLE to the deployer so they can manage other roles.

●​ Alternatively, set the ADMIN_ROLE as the admin of the other roles to allow for proper delegation and

management.

63​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

TypeScript

​

IMM-INSIGHT-06
Code Redundancy, Dead Code, and Code Duplication #30

Id IMM-INSIGHT-06

Severity INSIGHT

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: Multiple locations (e.g., PlumeStaking.sol::initialize, reward logic functions, staking

functions)

There are various instances of code redundancy, dead code, and duplication throughout the project, which

can lead to maintenance challenges, increased risk of bugs, and unnecessary contract size.

Redundancy

1.​ In PlumeStaking.sol::initialize, the following snippet is duplicated within the same function:

$.minStakeAmount = minStake;
$.cooldownInterval = cooldown;
$.initialized = true;

2.​ In reward rate updates, updateRewardPerTokenForValidator is called before

createRewardRateCheckpoint, but the latter already calls the former internally, making the first call

redundant:

PlumeRewardLogic.updateRewardPerTokenForValidator($, token, validatorId);
PlumeRewardLogic.createRewardRateCheckpoint($, token, validatorId, rate); // Use library

Dead Code

1.​ The function createRewardRateCheckpoint updates $.validatorRewardRateCheckpoints, but this

variable is never used elsewhere, making the update redundant and the function practically dead

64​ Immunefi Audits​ Immunefi / Plume Network

​

code.

2.​ In Raffle.sol the onlyAdmin, and onlySupra modifiers are not used. The onlyRole modifier is used

instead.

3.​ The _isRewardToken in RewardsFacets.sol is not used.

4.​ In PlumeRewardLogic.sol the findCheckpointIndex function is not used.

5.​ In PlumeRewardLogic.sol the calculateRewardsByIteratingCheckpoints function is not used.

6.​ In PlumeRewardLogic.sol the createCommissionRateCheckpoint function is used to create a

commission rate checkpoint. But the checkpoint is not used anywhere else.

7.​ In PlumeRewardLogic.sol the createRewardRateCheckpoint function is used to create a

validatorRewardRateCheckpoints checkpoint. But:

a.​ The validatorRewardRateCheckpoints is used to set userLastCheckpointIndex and in 2 view

functions.

b.​ The userLastCheckpointIndex is used in getUserLastCheckpointIndex which is a get function

not used anywhere else.

c.​ So to summarize, the createRewardRateCheckpoint is not really affecting any logic.

8.​ In PlumeValidatorLogic.sol the getValidatorInfo function is not used.

9.​ In PlumeValidatorLogic.sol the isValidatorActive function is not used.

10.​ In PlumeValidatorLogic.sol the getValidatorTotalStaked function is not used.

The following storage variables are not used:

●​ rewardPerTokenCumulative

●​ totalCooling

●​ totalWithdrawable

●​ userRewardPerTokenPaid

●​ validatorTotalCooling

●​ validatorTotalWithdrawable

●​ usingEpochs

●​ currentEpochNumber

●​ epochValidatorAmounts

●​ maxValidatorCommission

●​ maxValidatorPercentage

●​ userValidatorStakeStartTime

●​ hasRole

●​ slashVoteCounts

The following storage variables are "used" but not actually affecting any logic:

65​ Immunefi Audits​ Immunefi / Plume Network

​

●​ lastUpdateTimes

●​ rewardsAvailable

●​ totalClaimableByToken

●​ rewards

●​ validatorTotalStaked

●​ userLastCheckpointIndex

Duplication

1.​ The TREASURY_STORAGE_POSITION is being declared in multiple facets. This is an unnecessary risk and

all facets should use the same centralized source of truth.

2.​ PLUME_NATIVE and PLUME addresses are being declared in multiple facets.

3.​ REWARD_PRECISION is being declared in multiple facets.

4.​ The onlyRole modifier is being used in multiple facets, instead declaring it one in a common library

or a contract that is inherited by all facets.

5.​ _getPlumeStorage is being used in multiple facets, instead using the layout function from the

PlumeStakingStorage library.

Recommendation

●​ Remove duplicated and redundant code to improve maintainability and reduce contract size.

●​ Eliminate dead code and unused variables, such as validatorRewardRateCheckpoints, to prevent

confusion and potential errors.

●​ Any common logic should be extracted to a helper function.

66​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-07
No way to deactivate a whitelisted account #29

Id IMM-INSIGHT-07

Severity INSIGHT

Category Informational

Status Fixed in 8c295373bfd6c57602539f7add856af1280cf576

Description

Code Affected: Spin.sol

After a user is whitelisted, there is no way to remove them from the whitelist.

This can be problematic if a user's private key is compromised or if they want to leave the whitelist or any

other reason.

Recommendation

Add a function to remove a user from the whitelist.

67​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-08
Deactivated Prizes via setPrizeActive Remain in Prize List #28

Id IMM-INSIGHT-08

Severity INSIGHT

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: Raffle.sol::setPrizeActive

When a prize is deactivated using setPrizeActive, it is not removed from the prizeIds array or list. This can

result in deactivated prizes still appearing in prize selection logic or user interfaces, potentially causing

confusion or unintended behavior.

Recommendation

●​ When deactivating a prize via setPrizeActive, also remove its ID from the prizeIds array or list.

●​ Remove the setPrizeActive function entirely.

68​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-09
No Retry Mechanism for Failed Prize Transfers #26

Id IMM-INSIGHT-09

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Code Affected: Spin.sol::_safeTransferPlume

If _safeTransferPlume reverts, there is no retry mechanism in place.

It can lead to lost rewards if a transfer fails due to temporary issues.

Recommendation

Consider implementing a retry mechanism or a way for users to manually claim failed transfers.

69​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-10
Multiple Randomness Requests Possible in Raffle #25

Id IMM-INSIGHT-10

Severity INSIGHT

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: Raffle.sol::requestWinner, Raffle.sol::handleWinnerSelection

The requestWinner function in the Raffle contract can be called multiple and only stops being callable after

a handleWinnerSelection callback is processed.

This allows the creation of multiple randomness requests and can potentially overwrite the winner.

Since the owner is the only one who can call requestWinner, this is not a huge problem in the current

implementation.

But it could be a problem if the owner is not careful.

Recommendation

Add a flag that indicates that requestWinner was called for a specific prizeId and prevent calling it again if

that is the case.

70​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-11
Unrestricted Initialization of minStakeAmount #22

Id IMM-INSIGHT-11

Severity INSIGHT

Category Informational

Status Fixed in 297b5a76dd31c1d97c625bdb89e83560595ce6f7

Description

Code Affected: PlumeStaking.sol::initializePlume

The initializePlume function currently allows the minStakeAmount parameter to be set to zero during

contract initialization. This can lead to undesirable behavior, such as allowing users to register as stakers in

a validator context without being included in the $.stakers array.

While the initialization is restricted to the contract owner, the absence of a minimum value check

introduces unnecessary risk and could result in subtle bugs or inconsistencies if minStakeAmount is ever set

to zero, either accidentally or due to a misconfiguration.

Recommendation

Add a validation check in the initializePlume function to ensure that minStakeAmount is strictly greater

than zero.

71​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-12
Inconsistent Storage Access in AccessControlFacet #21

Id IMM-INSIGHT-12

Severity INSIGHT

Category Informational

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: AccessControlFacet.sol

The AccessControlFacet currently defines and uses its own storage variable _initializedAC, which is not

part of the shared PlumeStaking storage layout located at slot keccak256("plume.storage.PlumeStaking").

This practice is unsafe in the context of diamond storage. Any future facet or modification that assumes a

consistent storage layout could unintentionally overwrite this slot or use it with a different meaning -

leading to hard-to-detect bugs and unexpected behavior.

Recommendation

Define _initializedAC inside the PlumeStaking storage struct and access it via the shared storage layout.

This ensures safe and consistent access across all facets in compliance with the diamond storage pattern.

72​ Immunefi Audits​ Immunefi / Plume Network

​

AUDIT 2 - FINDINGS

IMM-CRIT-01
No isNewStake Handling in restakeRewards Enables Theft #48

Id IMM-CRIT-01

Severity Critical

Category Bug

Status
Fixed in
3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: StakingFacet.sol::restakeRewards

No isNewStake flow in restakeRewards allows theft of funds. A user can stake to a new validator via

restakeRewards but since there is no isNewStake check, they skip updating their reward checkpoint update.

This can allow the user to steal rewards they don't deserve.

(Since during the reward calculation lastUserRewardUpdateTime falls back to block.timestamp the flow to

exploit this issue is a bit more complicated, but it is still possible so this is very important to fix)

Recommendation

Add isNewStake handling in the restakeRewards function

73​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-02
Slashing Can Be Prevented via Gas Exhaustion #47

Id IMM-CRIT-02

Severity Critical

Category Bug

Status
Fixed in
3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: ValidatorFacet.sol::slashValidator

The slashValidator function loops over all of validatorStakers and then internally every reward token. A

malicious validator can use a large number of stakers to exploit this to consume all gas for slashing

attempts. Consider enforcing a max number of validatorStakers.

Recommendation

Implement a maximum limit on the number of stakers per validator

74​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-03
Duplicate timestamp Commission Checkpoints Can Lead to Theft #46

Id IMM-CRIT-03

Severity Critical

Category Bug

Status Fixed in 9f1e5483e289c9d45d3ebedd3b62c4e88ea3417c

Description

Code Affected: PlumeRewardLogic.sol::getEffectiveCommissionRateAt,

PlumeRewardLogic.sol::findCommissionCheckpointIndexAtOrBefore

When creating a new checkpoint of any kind, there is no check to see if the timestamp already exists. This

means that a validator can create multiple checkpoints with the same timestamp, which will cause the

binary search to return a different checkpoint for the same timestamp for different users.

The getEffectiveCommissionRateAt function relies on findCommissionCheckpointIndexAtOrBefore, which

uses binary search under the assumption that validatorCommissionCheckpoints contains distinct

timestamps. However, a validator can insert multiple commission changes within the same block, all

sharing the same timestamp. This causes inconsistent search results, potentially returning a 0%

commission for users and the maximum for the validator—allowing them to claim an unfair share of

rewards.

Side Note: validatorRewardRateCheckpoints can also contain entries with the same timestamp, but this is

controlled by you guys so it's less of an issue, but should be fixed as well.

Recommendation

If creating a new checkpoint in the same block, overwrite the last checkpoint instead of creating a new one.

75​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-04
Excessive Commission Changes Can Lock Funds #45

Id IMM-CRIT-04

Severity Critical

Category Bug

Status Fixed in 9d49b09f7a6591bbf0aa5bf9e2131869e2186f81

Description

Code Affected: PlumeRewardLogic.sol::calculateRewardsWithCheckpoints

In calculateRewardsWithCheckpoints, the distinctTimestamps array is built from all commission checkpoints

and reward checkpoints and later iterated over.

A malicious validator can create many commission checkpoints to bloat this array and effectively block

users from claiming rewards. This can also happen by accident with time.

Recommendation

●​ Implement a maximum limit on the number of commission checkpoints a validator can create

●​ Consider implementing a cleanup mechanism for old checkpoints

76​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-CRIT-05
Users Can Bypass Slashing Penalties #69

Id IMM-CRIT-05

Severity Critical

Category Bug

Status Fixed in b1f7364252f28d7eb342a26b846fedf34c8c0ace

Description

Code Affected: StakingFacet.sol::restake

The restake function allows users to move funds that are in the cooling or parked state to a different

validator. This opens up a loophole where users can effectively avoid slashing.

Example Scenario

Suppose Validator A is about to be slashed in the next block. A user with staked funds on Validator A can:

1.​ Initiate an unstake from Validator A.

2.​ Immediately call restake to move the funds to Validator B.

Even though the unstake request hasn't completed the cooldown period and is not yet withdrawable, the

funds can still be restaked elsewhere. This allows users to move their funds away from slashing risk and

effectively shield them, rendering the slashing mechanism ineffective.

Recommendation

Addressing this issue likely requires a redesign of the restake logic to ensure that slashing applies

consistently, even during cooldown periods.

77​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-CRIT-06
Validator Can Bypass Slashing Penalties #70

Id IMM-CRIT-06

Severity Critical

Category Bug

Status Fixed in 747f7156836522d908efa25feb532565c7df58b7

Description

Code Affected: ValidatorFacet.sol::finalizeCommissionClaim

 The finalizeCommissionClaim function is intended to prevent slashed validators from withdrawing

commission rewards that were initiated after the voting against them started. However, it reverts under the

following condition:

if (validator.slashed && claim.requestTimestamp >= validator.slashedAtTimestamp) {
 revert ValidatorInactive(validatorId);
}

claim.requestTimestamp refers to when the claim was initiated-not when the funds become withdrawable.

As a result, a validator can initiate a commission claim at any point before being slashed (even during the

voting period), and then simply wait for the cooldown to pass before finalizing the claim and withdrawing

funds. This effectively allows them to escape the consequences of slashing.

Recommendation

Update the condition to ensure that slashing applies retroactively to any pending commission claims.

Specifically, check that:

78​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

claim.requestTimestamp + PlumeStakingStorage.COMMISSION_CLAIM_TIMELOCK <
validator.slashedAtTimestamp

This ensures that only claims that completed their timelock before the validator was slashed can be

finalized.

79​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-HIGH-01
No New Reward Checkpoint on Token Remove #50

Id IMM-HIGH-01

Severity High

Category Bug

Status Fixed in 69b384873c6c9aeabf27c064248699f271eb248e

Description

Code Affected: RewardsFacet.sol::removeRewardToken

When a reward token is removed, no new RewardRateCheckpoint is created. This allows users to continue

accumulating rewards for the removed token, which should not be possible.

Recommendation

Create a final checkpoint when removing a reward token

80​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-HIGH-02
Staker Not Removed After Claim #49

Id IMM-HIGH-02

Severity High

Category Bug

Status
Fixed in
3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: RewardsFacet.sol::claim

In claim(address token, uint16 validatorId), the staker is not removed from the validator. This can lead

to stale data in the validator's staker list and potential issues with future operations.

Recommendation

Implement proper staker removal after successful claim

81​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-01
Winner Selection State Not Reset on Handler Failure #66

Id IMM-MED-01

Severity Medium

Category Bug

Status Fixed in 64be0a1e4876c0e9bd56cecd0584b119f45e4f31

Description

Code Affected: Raffle.sol::handleWinnerSelection

If handleWinnerSelection fails, there can never be a winner for that prizeId since isWinnerRequestPending

will remain true and prevent calls to requestWinner.

Recommendation

Consider implementing a timeout mechanism for pending winner selections

82​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-02
Spin State Not Reset on Randomness Handler Failure #65

Id IMM-MED-02

Severity Medium

Category Bug

Status Fixed in 08fa565d261fbe2874a8bf2aac7070f77fee6773

Description

Code Affected: Spin.sol::handleRandomness

If handleRandomness fails (for example the plume transfer reverts) isSpinPending[msg.sender] will remain

true forever and the user will never be able to spin again.

Recommendation

Consider implementing a timeout mechanism for pending spins

83​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-MED-03
Commission Might Be Able to Claim Before Slashing Period Ends #51

Id IMM-MED-03

Severity Medium

Category Bug

Status
Fixed in
f9c053b2b1683691ce35c36ba7e138e7a2807369

Description

Code Affected: RewardsFacet.sol::requestCommissionClaim and

RewardsFacet.sol::finalizeCommissionClaim

maxSlashVoteDurationInSeconds can exceed COMMISSION_CLAIM_TIMELOCK, letting validators claim

commission even when under active slashing vote. This could allow them to escape slashing

consequences.

Recommendation

Ensure maxSlashVoteDurationInSeconds is always less than COMMISSION_CLAIM_TIMELOCK

84​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-01
Validator Commission Checks Not Enforced on maxAllowedValidatorCommission

Update #61

Id IMM-LOW-01

Severity LOW

Category Bug

Status Fixed in 0523300203430aa7b7610102d9afe13b20307ef7

Description

Code Affected: ManagementFacet.sol::setMaxAllowedValidatorCommission

When maxAllowedValidatorCommission is changed, there is no check that all validator commissions are less

than the newly set maxAllowedValidatorCommission, allowing the existence of validators with a commission

higher than maxAllowedValidatorCommission.

Recommendation

During setMaxAllowedValidatorCommission, update all violating validators to the new maximum

85​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-02
Incorrect totalCooling Decrease on Slashing #57

Id IMM-LOW-02

Severity LOW

Category Bug

Status Fixed in 86af6d4c51b426f0adf621244f117bbe8d1d4d0d

Description

Code Affected: PlumeStaking.sol::slashValidator

When slashing a validator, totalCooling is being decreased by the entire amount of validatorTotalCooling

for the malicious validator. But, if a user unstaked before the slashing vote period even started (in other

words - unstaked in time) their unstake is valid and once they withdraw their funds, totalCooling will

decrease again, effectively decreasing twice for the same amount.

This also has the side effect of making validatorTotalCooling inaccurate for the same reason.

Recommendation

Implement proper tracking of cooling amounts for slashed validators

86​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-03
Expired Votes Not Properly Filtered #55

Id IMM-LOW-03

Severity LOW

Category Bug

Status Fixed in aebcbd127a932bed3bb6c3e6dfc4cd0df7de5902

Description

Code Affected: ValidatorFacet.sol::_cleanupExpiredVotes

_cleanupExpiredVotes doesn't validate that the voterValidatorId is active and not slashed, allowing stale or

invalid votes to linger.

Recommendation

Add validation to check validator status before processing votes

87​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-04
Votes Can Be Cleaned Up to Avoid Slashing #54

Id IMM-LOW-04

Severity LOW

Category Bug

Status Fixed in 93dd3e5bdbff73b5245ce8f3adbf4511708feaae

Description

Code Affected: ValidatorFacet.sol::cleanupExpiredVotes, ValidatorFacet.sol::voteToSlashValidator

If slashing isn't triggered before the voting window expires, a malicious validator can call

cleanupExpiredVotes to remove stale votes and evade punishment. Consider auto-triggering slashing

during voteToSlashValidator if the vote count is sufficient.

Recommendation

Implement auto-triggering of slashing when vote threshold is reached

88​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-05
Validator Creation Can Be Blocked From Being Created #53

Id IMM-LOW-05

Severity LOW

Category Bug

Status Fixed in 38292d32a941d786a45eef8ae5ca67bdc4f7e6bc

Description

Code Affected: ValidatorFacet.sol::addValidator, ValidatorFacet.sol::setValidatorAddresses

A malicious validator can frontrun an addValidator transaction by calling setValidatorAddresses, setting

the new validator's admin to their own. This causes the addValidator call to revert due to isAdminAssigned.

Recommendation

Implement a "acceptAdmin" function that allows the new admin to accept the admin role before switching

it to the new admin.

89​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-06
Claim Reverts on Slashed Validator #52

Id IMM-LOW-06

Severity LOW

Category Bug

Status Fixed in 3a745d505563afaf5093025f65d1195d0955a772

Description

Code Affected: RewardsFacet.sol::claim, RewardsFacet.sol::_validateValidatorForClaim

When calling claim(address token, uint16 validatorId), _validateValidatorForClaim reverts if the

validator is slashed, even though rewards may still be claimable. (the other claim function makes this less

of an issue, but still)

Recommendation

Modify _validateValidatorForClaim to allow claims for slashed validators

90​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

IMM-LOW-07
Incorrect Handling of Slashed Validators in updateRewardPerTokenForValidator #71

Id IMM-LOW-07

Severity LOW

Category Bug

Status Fixed in 7edae49a1afdb948b227f3d80ab592b7b7d4f761

Description

Code Affected: PlumeRewardLogic.sol::updateRewardPerTokenForValidator

The function currently checks for inactive validators before checking for slashed ones:

if (!validator.active) {
 ...
 return;
}
// --- END INACTIVE CHECK ---

// --- BEGIN SLASH CHECK ---
if (validator.slashed) {
 ...
}

However, since slashed validators are also marked as inactive, the slashed check is never reached. This

results in slashed validators being treated as merely inactive.

Recommendation

Reorder the conditional checks so that slashing is handled before inactivity.

91​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-08
clearPendingRewardsFlagIfEmpty Only Checks for PLUME_NATIVE #72

Id IMM-LOW-08

Severity LOW

Category Bug

Status Fixed in a17465bec3c22d915556ff44ecde6c882213bba4

Description

Code Affected: PlumeRewardLogic.sol::clearPendingRewardsFlagIfEmpty

The clearPendingRewardsFlagIfEmpty function currently checks only for removed pending rewards in

PLUME_NATIVE. If a user has pending rewards in other tokens and those are removed, the function fails to

account for them. As a result, it may incorrectly clear the user’s hasPendingRewards flag, even though

rewards from other tokens may still be pending.

Recommendation

Create a historical array of all reward tokens that ever existed in the protocol. Use this list within

clearPendingRewardsFlagIfEmpty to ensure that the function accurately checks all potential reward tokens,

even removed ones, before clearing the pending flag.

92​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-LOW-09
Admin May Improperly Clear Valid userValidatorCooldowns #73

Id IMM-LOW-09

Severity LOW

Category Bug

Status Fixed in 7a2fde4ace99430bb2bcb9939218ec415f0e55d2

Description

Code Affected:

●​ ManagementFacet.sol::adminClearValidatorRecord

●​ ManagementFacet.sol::adminBatchClearValidatorRecords

Both admin functions clear entries in userValidatorCooldowns without verifying their validity. This can lead

to the removal of legitimate cooldown requests that users are still entitled to withdraw after the cooldown

period.

Recommendation

Only remove cooldown entries if they are invalid (if they were created during the voting period for a slashing

event). This ensures legitimate user cooldowns remain intact and prevents unintended loss of withdrawal

rights.

93​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-01
Redundant Winner Request State Management #68

Id IMM-INSIGHT-01

Severity INSIGHT

Category Informational

Status Fixed in 10d3f3888735bde0f913ab8eaaf1e02bba1925ae

Description

Code Affected: Raffle.sol::requestWinner, Raffle.sol::handleWinnerSelection

requestWinner can be called again after handleWinnerSelection has been called because

isWinnerRequestPending was set to false during handleWinnerSelection. It has no actual effect because

handleWinnerSelection will revert due to the prize being inactive.

Recommendation

Prevent calling requestWinner if a winner has already been selected

94​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-02
Unused Code in Spin Contract #67

Id IMM-INSIGHT-02

Severity INSIGHT

Category Informational

Status Fixed in 6b203943f77d1f7fb43da2bf5008daf7f65106df

Description

Code Affected: Spin.sol::_getWeeklyJackpotDetails

The _getWeeklyJackpotDetails function is defined but never used in the contract.

Recommendation

Remove the unused _getWeeklyJackpotDetails function and any other unused code

95​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-03
Unnecessary Storage Reads #64

Id IMM-INSIGHT-03

Severity INSIGHT

Category Gas Optimization

Status
Fixed in
155942c25f9de53b2d34b64ab515afd055b4dbe3

Description

Code Affected: Multiple functions including _processMaturedCooldowns

In functions like _processMaturedCooldowns, storage variables are copied into storage references (e.g.,

CooldownEntry storage cooldownEntry = ...) even when only reading. Use memory variables instead where

writes aren't needed to save gas.

Recommendation

Replace storage references with memory variables when only reading

96​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-04
Duplicate Storage Variables #63

Id IMM-INSIGHT-04

Severity INSIGHT

Category Gas Optimization

Status Fixed in 12fb6349e9966cf1dd3ac678945a054bba458577

Description

Code Affected: Multiple storage variables across facets

Variables like validatorTotalStaked and validators[validatorId].delegatedAmount store the same value

and are used the same way. Removing redundancy can improve gas efficiency.

Recommendation

Remove redundant storage variables and use a single source of truth.

97​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-05
Different Reward Rates Used for The Same Segment #62

Id IMM-INSIGHT-05

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Code Affected: PlumeRewardLogic.sol::updateRewardPerTokenForValidator

During updateRewardPerTokenForValidator the timestamp used for getEffectiveRewardRateAt is the end of

the time segment, while getEffectiveCommissionRateAt uses the start of the time segment. Theoretically,

this can lead to different reward rates for the same time segment, leading to inconsistent reward

distributions.

But, since updateRewardPerTokenForValidator is called before every reward checkpoint, this is not a real

issue.

Recommendation

Make sure to keep this fact in mind in the future. Currently, this is not a real issue.

98​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-06
High Validator Count May Be Costly #60

Id IMM-INSIGHT-06

Severity INSIGHT

Category Gas Optimization

Status Acknowledged

Description

Code Affected: Multiple functions that iterate over validators

Since the system is expected to have only 10–20 validators it is not a real problem, but several functions iterate over
all validators, increasing gas costs. Consider limiting how many validators a single user can stake with (e.g., max
10) and management functions that iterate over all validators can iterate in batches.

Recommendation

●​ Implement a maximum limit on the number of validators a user can stake with

●​ Add batch processing for functions that iterate over all validators

99​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-07
maxValidatorPercentage Is Ineffective #59

Id IMM-INSIGHT-07

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Code Affected: StakingFacet.sol validatorPercentage checks

Currently always set to zero and immutable, making validatorPercentage checks non-functional.

Note: If this value is set to anything other than 0 and no one has staked yet, no one will be able to stake,

since for the first staker, newDelegatedAmount == totalStaked.

Recommendation

●​ Implement proper initialization of maxValidatorPercentage

●​ Add special handling for the first staker case

●​ Consider making maxValidatorPercentage configurable rather than immutable

100​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-08
Missing Constant Initialization #58

Id IMM-INSIGHT-08

Severity INSIGHT

Category Informational

Status Fixed in 27b9cd45a1e25c813bb3f444cb658021fca62124

Description

Code Affected: PlumeStaking.sol::initializePlume

Critical protocol constants such as maxSlashVoteDurationInSeconds and maxAllowedValidatorCommission are

not initialized in initializePlume. If maxAllowedValidatorCommission remains zero, validators cannot earn

commission.

Recommendation

Initialize all critical protocol constants in initializePlume

101​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-09
Single Validator Can Be Slashed Without Any Votes #56

Id IMM-INSIGHT-09

Severity INSIGHT

Category Informational

Status Acknowledged

Description

Code Affected: ValidatorFacet.sol::slashValidator

If only one validator is active, it can be slashed without any voting. There shouldn't be a single validator so

it's not a huge problem.

Recommendation

N/A

102​ Immunefi Audits​ Immunefi / Plume Network

​

IMM-INSIGHT-10
userLastCheckpointIndex Becomes Inaccurate After Checkpoint Pruning #74

Id IMM-INSIGHT-10

Severity INSIGHT

Category Informational

Status
Fixed in
152e497926bba305662c0128a9ad44002ecf8593

Description

Code Affected: ManagementFacet.sol::pruneRewardRateCheckpoints

The pruneRewardRateCheckpoints function removes validator reward checkpoints by shifting the checkpoint

array and popping elements. However, if a user’s userLastCheckpointIndex was pointing to one of the

pruned entries (for example the latest checkpoint), it will become invalid and refer to a non-existent index.

Since userLastCheckpointIndex is only used in view contexts and doesn’t affect state changes or protocol

logic, this issue poses no security risk.

Recommendation

Consider whether this variable is still necessary. If it's not providing meaningful utility, it might be worth

removing.

103​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

TypeScript

​

IMM-INSIGHT-11
The view function getSlashVoteCount May Count Votes from Ineligible Validators #75

Id IMM-INSIGHT-11

Severity INSIGHT

Category Informational

Status Fixed in aebcbd127a932bed3bb6c3e6dfc4cd0df7de5902

Description

Code Affected: ValidatorFacet.sol::getSlashVoteCount

The getSlashVoteCount function does not verify whether the vote was cast by an eligible validator (i.e.,

active and not slashed). As a result, votes from inactive or already-slashed validators may be incorrectly

counted. Additionally, there is inconsistency in how vote expiration is handled:

●​ _cleanupExpiredVotes treats votes expiring at the current block as expired:

bool voteHasExpired = block.timestamp >= voteExpiration;

●​ getSlashVoteCount, on the other hand, treats them as still valid:

if (voteExpiration > 0 && voteExpiration >= currentTime) {
 validVoteCount++;
}

Recommendation

Ensure validVoteCount is incremented only when:

1.​ The voting validator is active and not slashed.

104​ Immunefi Audits​ Immunefi / Plume Network

​

2.​ The vote has not expired (voteExpiration > block.timestamp).

Align the expiration logic with _cleanupExpiredVotes to maintain consistency across the codebase.

105​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

TypeScript

​

IMM-INSIGHT-12
Off-by-One Error Prevents Re-Voting for a Single Block #76

Id IMM-INSIGHT-12

Severity INSIGHT

Category Informational

Status
Fixed in
0804ea4ba73a22c608d00d638369392578c6eeb3

Description

Code Affected: ValidatorFacet.sol::voteToSlashValidator

In voteToSlashValidator, a validator is prevented from voting again if their previous vote has not yet

expired:

 uint256 currentVoteExpiration =
$.slashingVotes[maliciousValidatorId][voterValidatorId];
 if (currentVoteExpiration >= block.timestamp) {
 revert AlreadyVotedToSlash(maliciousValidatorId, voterValidatorId);
 }

This logic treats a vote as valid if its expiration is greater than or equal to the current block timestamp.

However, _cleanupExpiredVotes uses the following logic to determine vote validity:

bool voteHasExpired = block.timestamp >= voteExpiration;

This means votes that expire in the current block (voteExpiration == block.timestamp) are treated as

expired in _cleanupExpiredVotes, but still prevent re-voting in voteToSlashValidator.

Impact

106​ Immunefi Audits​ Immunefi / Plume Network

TypeScript

​

This creates a one-block window where a validator cannot re-vote even though their vote is considered

expired for cleanup and counting purposes. It's a minor logic inconsistency that might lead to confusion or

temporary vote blocking.

Recommendation

Update the voting logic in voteToSlashValidator to match the expiration logic used in

_cleanupExpiredVotes. Specifically, change the condition to:

if (currentVoteExpiration > block.timestamp) {
 revert AlreadyVotedToSlash(maliciousValidatorId, voterValidatorId);
}

This ensures that votes expiring in the current block are consistently treated as expired across all code

paths.

107​ Immunefi Audits​ Immunefi / Plume Network

	ABOUT IMMUNEFI
	TERMINOLOGY
	EXECUTIVE SUMMARY
	AUDIT 1
	AUDIT 2
	

	
	AUDIT 1 - FINDINGS
	IMM-CRIT-01
	IMM-CRIT-02
	IMM-CRIT-03
	IMM-CRIT-04
	IMM-CRIT-05
	IMM-CRIT-06
	IMM-CRIT-07
	IMM-CRIT-08
	IMM-CRIT-09
	IMM-CRIT-10
	IMM-CRIT-11
	IMM-CRIT-12
	IMM-CRIT-13
	IMM-CRIT-14
	IMM-HIGH-01
	IMM-HIGH-02
	IMM-HIGH-03
	IMM-HIGH-04
	IMM-HIGH-05
	IMM-HIGH-06
	IMM-MED-01
	IMM-MED-02
	IMM-MED-03
	IMM-MED-04
	IMM-MED-05
	IMM-MED-06
	IMM-MED-07
	IMM-MED-08
	IMM-MED-09
	IMM-LOW-01
	IMM-LOW-02
	IMM-LOW-03
	IMM-INSIGHT-01
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06
	IMM-INSIGHT-07
	IMM-INSIGHT-08
	IMM-INSIGHT-09
	IMM-INSIGHT-10
	IMM-INSIGHT-11
	IMM-INSIGHT-12

	AUDIT 2 - FINDINGS
	IMM-CRIT-01
	IMM-CRIT-02
	
	IMM-CRIT-03
	
	IMM-CRIT-04
	
	IMM-CRIT-05
	
	IMM-CRIT-06
	
	IMM-HIGH-01
	IMM-HIGH-02
	
	IMM-MED-01
	IMM-MED-02
	
	IMM-MED-03
	
	IMM-LOW-01
	IMM-LOW-02
	
	IMM-LOW-03
	IMM-LOW-04
	IMM-LOW-05
	IMM-LOW-06
	IMM-LOW-07
	IMM-LOW-08
	IMM-LOW-09
	IMM-INSIGHT-01
	IMM-INSIGHT-02
	IMM-INSIGHT-03
	IMM-INSIGHT-04
	IMM-INSIGHT-05
	IMM-INSIGHT-06
	IMM-INSIGHT-07
	IMM-INSIGHT-08
	IMM-INSIGHT-09
	IMM-INSIGHT-10
	IMM-INSIGHT-11
	IMM-INSIGHT-12

